A. | $(-\sqrt{2},\sqrt{2})$ | B. | $(1,\sqrt{2})$ | C. | $(-1,\sqrt{2}]$ | D. | $[1,\sqrt{2})$ |
分析 $y=\sqrt{1-{x^2}}$表示的曲線為圓心在原點(diǎn),半徑是1的圓在x軸以及x軸上方的部分,把斜率是1的直線平行移動(dòng),即可求得結(jié)論.
解答 解:$y=\sqrt{1-{x^2}}$表示的曲線為圓心在原點(diǎn),半徑是1的圓在x軸以及x軸上方的部分.
作出曲線$y=\sqrt{1-{x^2}}$的圖象,在同一坐標(biāo)系中,再作出斜率是1的直線,由左向右移動(dòng),
可發(fā)現(xiàn),直線先與圓相切,再與圓有兩個(gè)交點(diǎn),
直線與曲線相切時(shí)的m值為$\sqrt{2}$,直線與曲線有兩個(gè)交點(diǎn)時(shí)的m值為1,
則1$≤m<\sqrt{2}$.
故選D.
點(diǎn)評(píng) 本題考查直線與曲線的交點(diǎn)問(wèn)題,解題的關(guān)鍵是在同一坐標(biāo)系中,分別作出函數(shù)的圖象,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}-\overrightarrow{OB}+\overrightarrow{OC}$ | B. | $\overrightarrow{OM}=\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}-\overrightarrow{OC}$ | C. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\overrightarrow{OC}$ | D. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}+\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 截距相等的直線都可以用方程$\frac{x}{a}+\frac{y}{a}=1$表示 | |
B. | 方程x+my-2=0(m∈R)不能表示平行y軸的直線 | |
C. | 經(jīng)過(guò)點(diǎn)P(1,1),傾斜角為θ的直線方程為y-1=tanθ(x-1) | |
D. | 經(jīng)過(guò)兩點(diǎn)P1(x1,y1),P2(x2,y2)(x1≠x2)的直線方程為$y-{y_1}=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}(x-{x_1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,1) | B. | (-∞,1) | C. | (-∞,-1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{11}{6}$ | B. | -$\frac{11}{6}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com