【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為
A. 11π B. C. D.
【答案】D
【解析】∵AC=2,AB=1,∠BAC=120°,
∴BC= ,
∴三角形ABC的外接圓半徑為r,2r= ,r= ,
∵SA⊥平面ABC,SA=2,
由于三角形OSA為等腰三角形,O是外接球的球心.
則有該三棱錐的外接球的半徑R= ,
∴該三棱錐的外接球的表面積為S=4πR2= .
選D.
點睛:空間幾何體與球接、切問題的求解方法
(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關系求解.
(2)若球面上四點構(gòu)成的三條線段兩兩互相垂直,且,一般把有關元素“補形”成為一個球內(nèi)接長方體,利用求解.
科目:高中數(shù)學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計 | |
認為共享產(chǎn)品對生活有益 | |||
認為共享產(chǎn)品對生活無益 | |||
總計 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?
(2)現(xiàn)按照分層抽樣從認為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.
參與公式:
臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中是自然常數(shù).
(1)判斷函數(shù)在內(nèi)零點的個數(shù),并說明理由;
(2) , ,使得不等式成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當,時,求函數(shù)在處的切線方程;
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)在(1)的條件下,證明:(其中為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱中,底面為等腰梯形,.
(1)證明:;
(2)設是線段上的動點,是否存在這樣的點,使得二面角的余弦值為,如果存在,求出的長;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.
(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.
(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校的特長班有名學生,其中有體育生名,藝術(shù)生名,在學校組織的一次體檢中,該班所有學生進行了心率測試,心率全部介于次/分到次/分之間.現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五章,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.
(1)求的值,并求這名同學心率的平均值;
(2)因為學習專業(yè)的原因,體育生常年進行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進行系統(tǒng)的身體鍛煉,若從第一組和第二組的學生中隨機抽取一名,該學生是體育生的概率為,請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為心率小于次/分與常年進行系統(tǒng)的身體鍛煉有關?說明你的理由.
心率小于60次/分 | 心率不小于60次/分 | 合計 | |
體育生 | 20 | ||
藝術(shù)生 | 30 | ||
合計 | 50 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com