分析 (1)利用已知條件分別求出BM、MD、PB,得到$\frac{BN}{NP}$=$\frac{BM}{MD}$,即可得到MN∥PD,再利用線面平行的判定定理即可證明;
(2)利用等體積方法,求點(diǎn)C到平面PBD的距離.
解答 (1)證明:在正△ABC中,BM=2$\sqrt{3}$.
在△ACD中,∵M(jìn)為AC中點(diǎn),DM⊥AC,∴AD=CD.
∵∠ADC=120°,∴DM=$\frac{2\sqrt{3}}{3}$,
∴$\frac{BM}{MD}$=3.
在等腰直角△PAB中,PA=AB=4,PB=4$\sqrt{2}$,
∴$\frac{BN}{NP}$=3,
∴$\frac{BN}{NP}$=$\frac{BM}{MD}$,
∴MN∥PD.
又MN?平面PDC,PD?平面PDC,
∴MN∥平面PDC;
(2)解:設(shè)點(diǎn)C到平面PBD的距離為h.
由(1)可知,BD=$\frac{8\sqrt{3}}{3}$,PM=$\sqrt{16+4}$=2$\sqrt{5}$,
∴S△PBD=$\frac{1}{2}×\frac{8\sqrt{3}}{3}×2\sqrt{5}$=$\frac{8\sqrt{15}}{3}$.
∵S△BCD=$\frac{1}{2}×\frac{8\sqrt{3}}{3}×2$=$\frac{8\sqrt{3}}{3}$,
∴由等體積可得$\frac{1}{3}×\frac{8\sqrt{3}}{3}×4=\frac{1}{3}×\frac{8\sqrt{15}}{3}h$,∴h=$\frac{4\sqrt{5}}{5}$,
∴點(diǎn)C到平面PBD的距離為$\frac{4\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查線面平行的判定,考查點(diǎn)到平面距離的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,正確求體積是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com