4.如圖,ABCD是圓O的內(nèi)接四邊形,點C是$\widehat{BD}$的中點,切線CE交AD的延長線于E,AC交BD于F.
(Ⅰ)求證:∠AFD=∠CDE;
(Ⅱ)寫出比值與$\frac{AE}{CE}$相等的5組線段.

分析 (Ⅰ)如圖,連接OC,證明△AFD∽△CDE,即可證明:∠AFD=∠CDE;
(Ⅱ)比值與$\frac{AE}{CE}$相等的線段共有7組,只需任寫出其中5組即可.

解答 (Ⅰ)證明:如圖,連接OC,
因為C是$\widehat{BD}$的中點,所以O(shè)C⊥BD.
因為CE為圓O的切線,所以O(shè)C⊥CE,
所以BD∥CE,所以∠E=∠FDA.
又因為∠DAF=∠DCE,
所以△AFD∽△CDE,
所以∠AFD=∠CDE…(5分)
(Ⅱ)解:比值與$\frac{AE}{CE}$相等的線段共有7組,只需任寫出其中5組即可,$\frac{CE}{DE},\frac{AD}{FD},\frac{AB}{BF},\frac{BC}{CF},\frac{DC}{CF}$.…(10分)

點評 本題考查圓的弦切角定理和三角形相似的判定定理和性質(zhì)定理的運用,考查推理和運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標系中,求曲線cos2θ-ρcosθ+1=0上一點到極點距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義在R上的函數(shù)f(x)滿足f(x)=f(x-1)-f(x-2),且f(0)=3,則f(2013)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-xlnx,g(x)=ex-tx2+x,t∈R,其中e是自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù) f(x)在點(1,f(1))處切線方程;
(Ⅱ)若g(x)≥f(x)對任意x∈(0,+∞)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,AB是半圓O的直徑,P在AB的延長線上,PD與半圓O相切于點C,AD⊥PD,若PC=2,PB=1,則CD=1.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知斜三棱柱ABC-A1B1C1中,側(cè)面A1B與側(cè)面A1C成60°,且側(cè)面A1B與側(cè)面A1C面積之比為8:5,若棱柱的側(cè)面積為60cm2,體積為15$\sqrt{3}$cm3,求側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°,點N在線段PB上,且PN=$\sqrt{2}$.
(1)求證:MN∥平面PDC;
(2)求點C到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在正方體ABCD-A1B1C1D1中,棱長是1,E、F分別是AB、BC的中點,H是DD1上任意一點.
(1)證明:EF∥平面A1C1H;
(2)若H是DD1的中點,求H到平面A1C1FE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合A滿足:若a∈A,則$\frac{1}{1-a}$∈A,且1∉A.
(1)若2∈A,請求出A中一定含有的其他元素;
(2)求證:若a∈A,則1-$\frac{1}{a}$∈A.

查看答案和解析>>

同步練習(xí)冊答案