已知a,b,c是△ABC中角A,B,C的對(duì)邊,S是△ABC的面積.若a2+c2=b2+ac,
(Ⅰ)求角B;
(Ⅱ)若b=2,S=
3
,判斷三角形形狀.
考點(diǎn):余弦定理
專題:解三角形
分析:(Ⅰ)△ABC中,由條件利用余弦定理可得cosB=
1
2
,由此求得 B的值.
(Ⅱ)根據(jù) S=
1
2
ac•sinB=
3
,可得ac=4.再由b=2,可得 a2+c2=8,得a=b=c,由此可得判斷三角形形狀.
解答: 解:(Ⅰ)△ABC中,∵a2+c2=b2+ac,∴cosB=
a2+c2-b2
2ac
=
1
2
,∴B=60°.
(Ⅱ)∵S=
1
2
ac•sinB=
3
,可得ac=4.
又b=2,∴a2+c2=8,得a=b=c,
故三角形為等邊三角形.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>1時(shí),試比較x+lnx與e2x的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1(側(cè)棱和底面垂直的棱柱)中,平面A1BC⊥側(cè)面A1ABB1,AB=BC=AA1=3,線段AC、A1B上分別有一點(diǎn)E、F且滿足2AE=EC,2BF=FA1
(1)求證:AB⊥BC;
(2)求點(diǎn)E到直線A1B的距離;
(3)求二面角F-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
(1)x2-2x-3>0             
(2)2x2-x-1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD中點(diǎn),M是棱PC上的點(diǎn),PD=PA=2,BC=
1
2
AD=1,CD=
3

(1)若點(diǎn)M是棱PC的中點(diǎn),求證:PA∥平面BMQ;
(2)求證:平面PQB⊥底面PAD;
(3)若二面角M-BQ-C大小為θ,且θ∈[
π
6
,
π
3
],若
PM
=t
MC
,試確定t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)m什么值時(shí),復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i是:
(Ⅰ)實(shí)數(shù);
(Ⅱ)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(m2-8m+15)+(m2-9m+18)i,
(1)若復(fù)數(shù)z是純虛數(shù),求實(shí)數(shù)m值.
(2)若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于第三象限,求實(shí)數(shù)m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:函數(shù)y=(a-1)x+1在x∈(-∞,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+ax+1與x軸交于不同的兩點(diǎn).
(1)若p為真且q為真,求a的取值范圍;
(2)若p與q中一個(gè)為真一個(gè)為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,3,5,7,9這五個(gè)數(shù)中,每次取出兩個(gè)不同的數(shù)分別記為a,b,則斜率不同的直線ax+by+3=0共有
 
條.

查看答案和解析>>

同步練習(xí)冊(cè)答案