17.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}-x-2,x≥0\\ \frac{x}{x+4}+{log_4}|x|,x<0\end{array}$,則f(f(2))=$\frac{7}{2}$.

分析 由分段函數(shù)先求出f(2)=-8,再利用對數(shù)換底公式能求出f(f(2))的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}-x-2,x≥0\\ \frac{x}{x+4}+{log_4}|x|,x<0\end{array}$,
∴f(2)=-4-2-2=-8,
f(f(2))=f(-8)=$\frac{-8}{-8+4}+lo{g}_{4}8$=2+$\frac{lg8}{lg4}$=2+$\frac{3}{2}$=$\frac{7}{2}$.
故答案為:$\frac{7}{2}$.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

過橢圓的左頂點作斜率為的直線交橢圓于點,交軸于點,中點,定點滿足:對于任意的都有,則點的坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.多面體PEBCDA的直觀圖及其主視圖、俯視圖如圖所示,已知PA⊥平面ABCD,則多面體PECBDA的體積是 ( 。
A.$\frac{80}{3}$B.80C.48D.$\frac{176}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中奇數(shù)的個數(shù)為18(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若a,b,c∈R,且滿足|a-c|<b,給出下列結(jié)論,①a+b>c;②b+c>a;③a+c>b;④|a|+|b|>|c|;其中錯誤的個數(shù)( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在斜四棱柱ABCD-A1B1C1D1的底面是邊長為2$\sqrt{3}$的菱形,且∠BAD=$\frac{π}{3}$,若∠AA1C=$\frac{π}{2}$,且A1在底面ABCD上的射影為△ABD的重心G.
(1)求證:平面ACC1A1⊥平面BDD1B1;(2)求三棱錐C1-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且B=2C,2bcosC-2ccosB=a,則tanC=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$±\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.將一個骰子先后拋擲兩次,觀察向上的點數(shù).
(1)列出兩數(shù)都為奇數(shù)的所有可能情況,并求兩數(shù)都為奇數(shù)的概率;
(2)以第一次向上的點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y,列出“x>y”的所有可能情況,并求事件“x>y”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若sinα是方程5x2-7x-6=0的根,則$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(3π+α)}$=$\frac{5}{3}$.

查看答案和解析>>

同步練習(xí)冊答案