求證:12+22+32+…+(n-1)2+n2=
n(n+1)(2n+1)
6
考點:數(shù)學歸納法
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:利用數(shù)學歸納法的證明標準,驗證n=1時成立,假設n=k是成立,證明n=k+1時等式也成立即可.
解答: 證明:(1)當n=1時,左邊=12=1,右邊=
1×2×3
6
=1,等式成立.
(2)假設當n=k時,等式成立,即:12+22+32+…+k2=
k(k+1)(2k+1)
6
-----------(6分)
那么,當n=k+1時,12+22+32+…+k2+(k+1)2
=
k(k+1)(2k+1)
6
+(K+1)2
=
k(k+1)(2k+1)+6(k+1)2
6
=
k(k+1)(2k+1)[2(k+1)+1]
6

就是說,當n=k+1時等式也成立.----------------------(13分)
綜上所述,對任何n∈N+都成立.----------------------(14分)
點評:本題是中檔題,考查數(shù)學歸納法的應用,注意數(shù)學歸納法證明時,必須用上假設.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知隨機變量X~N(4,1),且P(3≤X≤5)=0.6826,則P(X<3)等于(  )
A、0.1585
B、0.1586
C、0.1587
D、0.1588

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)把下列的極坐標方程化為直角坐標方程(并說明對應的曲線):ρcos(θ-
π
4
)=
2

(2)把下列的參數(shù)方程化為普通方程(并說明對應的曲線):
x=cosθ
y=cos2θ-6
(θ為參數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)和g(x),規(guī)定f(x)*g(x)=min{f(x),g(x)},其中min{a,b}表示a與b中較小數(shù).已知f(x)=3-2|x|,g(x)=x2-2x,求f(x)*g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) 2 3 4 5
加工的時間y(小時) 2.5 3 4 4.5
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關于x的線性回歸方程
y
=
b
x+
a
,并在坐標系中畫出回歸直線;
(3)試預測加工10個零件需要多少時間?
參考公式:回歸直線
y
=bx+a,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點M到點F(4,0)的距離比它到直線l:x+6=0的距離小于2.求點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2≠b2,且b2為a1,a2的等差中項,a2為b2,b3的等差中項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記cn=
1
n
(a1+a2+…+an)(b1+b2+…+bn),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過點M(2,1)作直線L,交橢圓
x2
16
+
y2
4
=1于A、B兩點.如果點M恰好為線段AB的三等分點,求直線L的方程.(用普通方法求解,不用參數(shù)方程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
x+
xy
+y
x
x
-y
y

查看答案和解析>>

同步練習冊答案