命題:方程表示的曲線是焦點(diǎn)在y軸上的雙曲線,命題:方程無(wú)實(shí)根,若為真,為真,求實(shí)數(shù)的取值范圍.

.

解析試題分析:先計(jì)算出命題、為真時(shí)的取值范圍;又為真,為真,知假,從而可求出實(shí)數(shù)的取值范圍.
試題解析:,∴.故.                      4分
,即,∴.故.      8分
又∵為真,為真,∴假,                 10分
,∴.                 12分
考點(diǎn):邏輯與命題、雙曲線的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0).
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)過(guò)原點(diǎn)O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓與雙曲線x2-y2=0有相同的焦點(diǎn),且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,1)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若=2,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PMQN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6,設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)A(-2,-1)橢圓C=1(ab>0)的左焦點(diǎn)為F,短軸端點(diǎn)為B1、B2,=2b2.
(1)求ab的值;
(2)過(guò)點(diǎn)A的直線l與橢圓C的另一交點(diǎn)為Q,與y軸的交點(diǎn)為R.過(guò)原點(diǎn)O且平行于l的直線與橢圓的一個(gè)交點(diǎn)為P.若AQ·AR=3OP2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)橢圓的離心率,頂點(diǎn)的距離為,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn).
(。┰嚺袛帱c(diǎn)到直線的距離是否為定值.若是請(qǐng)求出這個(gè)定值,若不是請(qǐng)說(shuō)明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A,B,C是橢圓Wy2=1上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)BW的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知F1,F2分別為橢圓C1=1(a>b>0)的上下焦點(diǎn),其中F1是拋物線C2x2=4y的焦點(diǎn),點(diǎn)MC1C2在第二象限的交點(diǎn),且|MF1|=.

(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線lyk(xt)(t≠0)交橢圓于A,B兩點(diǎn),若橢圓上一點(diǎn)P滿足,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案