【題目】已知拋物線的方程,焦點(diǎn)為,已知點(diǎn)上,且點(diǎn)到點(diǎn)的距離比它到軸的距離大1.

(1)試求出拋物線的方程;

(2)若拋物線上存在兩動(dòng)點(diǎn)在對(duì)稱軸兩側(cè)),滿足為坐標(biāo)原點(diǎn)),過點(diǎn)作直線交兩點(diǎn),若,線段上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) (2)存在,且坐標(biāo)為

【解析】

(1)到點(diǎn)的距離比它到軸的距離大1,結(jié)合拋物線定義可得,從而可得結(jié)果;(2)設(shè),結(jié)合,可得直線,直線,與聯(lián)立利用弦長(zhǎng)公式求得若點(diǎn)存在,設(shè)點(diǎn)坐標(biāo)為可得,時(shí),,從而可得結(jié)果.

(1)因?yàn)?/span>到點(diǎn)的距離比它到軸的距離大1,由題意和拋物線定義,,所以拋物線的方程為

(2)由題意,

設(shè),得,直線,

整理可得,

直線①若斜率存在,設(shè)斜率為,與聯(lián)立得

,

,

若點(diǎn)存在,設(shè)點(diǎn)坐標(biāo)為,

時(shí),,

解得(不是定點(diǎn),舍去)

則點(diǎn)經(jīng)檢驗(yàn),此點(diǎn)滿足,所以在線段上,

②若斜率不存在,則

此時(shí)點(diǎn)滿足題意,

綜合上述,定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,其中a,

的極大值;

設(shè),,若對(duì)任意的,恒成立,求a的最大值;

設(shè),若對(duì)任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是矩形,沿對(duì)角線折起,使得點(diǎn)在平面內(nèi)的射影恰好落在邊上.

(Ⅰ)求證:平面平面;

(Ⅱ)當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有編號(hào)分別為1,2,3,4,56,7,8的八個(gè)小球和編號(hào)為1,2,3,45,67,8的八個(gè)盒子.現(xiàn)將這八個(gè)小球隨機(jī)放入八個(gè)盒子內(nèi),要求每個(gè)盒子內(nèi)放一個(gè)球,要求編號(hào)為偶數(shù)的小球在編號(hào)為偶數(shù)的盒子內(nèi),且至少有四個(gè)小球在相同編號(hào)的盒子內(nèi),則一共有______種投放方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)k為常數(shù),).

1)在下列條件中選擇一個(gè)________使數(shù)列是等比數(shù)列,說(shuō)明理由;

①數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;

②數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列;

③數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列的前n項(xiàng)和構(gòu)成的數(shù)列.

2)在(1)的條件下,當(dāng)時(shí),設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓Q:(x2)2+(y2)2=1,拋物線Cy2=4x的焦點(diǎn)為F,過F的直線l與拋物線C交于AB兩點(diǎn),過F且與l垂直的直線l'與圓Q有交點(diǎn).

1)求直線l'的斜率的取值范圍;

2)求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(,),(),設(shè).

1)求函數(shù)[0,π]上的單調(diào)減區(qū)間;

2)在△ABC中,角ABC所對(duì)的邊分別為a,b,c,若,,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為,左、右焦點(diǎn)分別為、,上頂點(diǎn)為,右頂點(diǎn)為,且、、成等比數(shù)列.

1)求橢圓的離心率;

2)判斷的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且過點(diǎn)

1)求C的方程;

2)若直線lC有且只有一個(gè)公共點(diǎn),l與圓x2+y26交于A,B兩點(diǎn),直線OA,OB的斜率分別記為k1,k2.試判斷k1k2是否為定值,若是,求出該定值;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案