△ABC是以A為鈍角的三角形,且,則m的取值范圍是   
【答案】分析:根據(jù)角A是鈍角,可得數(shù)量積,結(jié)合坐標(biāo)運(yùn)算解得m>-3;又因?yàn)橄蛄?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104314165831411/SYS201311031043141658314011_DA/1.png">是不共線的向量,可得1×(-2)≠(m-3)m,解之得m≠1且m≠2.兩者相結(jié)合即可得到本題的答案.
解答:解:∵,且A為鈍角
=1×(m-3)+m×(-2)<0,解之得m>-3
又∵A、B、C三點(diǎn)不共線,得向量是不共線的向量
∴1×(-2)≠(m-3)m,即m2-3m+2≠0,解之得m≠1且m≠2
因此,實(shí)數(shù)m的取值范圍是(-3,1)∪(1,2)∪(2,+∞)
故答案為(-3,1)∪(1,2)∪(2,+∞)
點(diǎn)評(píng):本題給出向量的坐標(biāo)含有參數(shù)m,在它們夾鈍角的情況下求參數(shù)m的取值范圍.著重考查了向量平行的條件、向量數(shù)量積的坐標(biāo)運(yùn)算公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC是以A為鈍角的三角形,且
AB
=(1,m),
AC
=(m-3,-2)
,則m的取值范圍是
(-3,1)∪(1,2)∪(2,+∞)
(-3,1)∪(1,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

△ABC是以A為鈍角的三角形,且數(shù)學(xué)公式,則m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

△ABC是以A為鈍角的三角形,且
AB
=(1,m),
AC
=(m-3,-2)
,則m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市七校聯(lián)考高一(上)期末數(shù)學(xué)試卷(B卷)(解析版) 題型:填空題

△ABC是以A為鈍角的三角形,且,則m的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案