如圖,已知直線l:y=2x-4交拋物線y2=4x于A、B兩點(diǎn),試在拋物線AOB這段曲線上求一點(diǎn)P,使△ABP的面積最大,并求這個(gè)最大面積.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:直線l:y=2x-4與拋物線y2=4x聯(lián)立,求出A,B的坐標(biāo),可得|AB|,求出P到直線l的距離的最大值,即可得出P的坐標(biāo),及最大面積.
解答: 解:由
y=2x-4
y2=4x
得:4x2-20x+16=0,即x2-5x+4=0,
所以A(4,4)、B(1,-2).
|AB|=3
5
.…(4分)
設(shè)點(diǎn)P(t2,2t)(-1<t<2),則P到直線l的距離為:d=
|2t2-2t-4|
5
=
|2(t+1)(t-2)|
5
,
所以S△ABP=
1
2
•|AB|•d=3|(t+1)(t-2)|

故當(dāng)t=
1
2
,即點(diǎn)P(
1
4
,1)
時(shí),△ABP的面積最大為
27
4
.…(12分)
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查點(diǎn)到直線距離公式的運(yùn)用,正確求出P到直線l的距離是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校對(duì)高一年級(jí)8個(gè)班參加合唱比賽的得分進(jìn)行了統(tǒng)計(jì),得到樣本的莖葉圖(如圖所示),則該樣本的中位數(shù)和平均數(shù)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
y≥0
x-2y≥0
x-y-2≥0
,則實(shí)數(shù)m=
y-1
x+1
的取值范圍是( 。
A、(-1,1)
B、[-1,1)
C、(-
1
3
,
1
2
D、[-
1
3
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且
AC
BC
=0,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得|QB|2-|QA|2=2?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由.
(3)過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作⊙O:x2+y2=
4
3
的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
1
3m2
+
1
n2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知命題p:橢圓
x2
10-m
+
y2
m-2
=1
,長(zhǎng)軸在y軸上.
(Ⅰ)若橢圓焦距為4,求實(shí)數(shù)m的值;
(Ⅱ)命題q:關(guān)于x的不等式x2-2x+m>0的解集是R;若“p∧q”是假命題,“p∨q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知離心率為
3
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線i交橢圓C于不同的兩點(diǎn)A、B.
(1)求橢圓C的方程;
(2)記直線MB、MA與x軸的交點(diǎn)分別為P、Q,若MP斜率為k1,MQ斜率為k2,求k1+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-2.
(1)求此拋物線的方程;
(2)已知點(diǎn)B(-1,0),設(shè)直線l:y=kx+b(k≠0)與拋物線C交于不同的兩點(diǎn)P(x1,y1),Q(x2,y2),若x軸是∠PBQ的角平分線,證明直線l過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)離心率為
2
2
,且橢圓的長(zhǎng)軸比焦距長(zhǎng)2
2
-2

(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M(0,-
1
3
)的動(dòng)直線l交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無(wú)論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過(guò)定點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
G=
ab
是a,G,b成等比數(shù)列的充分不必要條件;
②若角α,β滿足cosαcosβ=1,則sin(α+β)=0;
③“若x2+y2≠0,則x,y不全為零”的否命題;
④“若m>0,則x2+x-m=0有實(shí)根”的逆否命題;
⑤命題“存在x0∈R,2x0<0”的否定是“對(duì)任意的x0∈R,2x0>0”.
其中正確的命題的序號(hào)是
 
(把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案