(本小題滿分14分) 設為非負實數(shù),函數(shù).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)討論函數(shù)的零點個數(shù),并求出零點.(Ⅲ)當時,,試求的最大值,并求取得最大值時的表達式。
解析:(Ⅰ)當時,, -------------1分
① 當時,,
∴在上單調(diào)遞增; --------------2分
② 當時,,
∴在上單調(diào)遞減,在上單調(diào)遞增; --------------3分
綜上所述,的單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是。------4分
(Ⅱ)(1)當時,,函數(shù)的零點為; -----5分
(2)當時,, --------------6分
故當時,,二次函數(shù)對稱軸,
∴在上單調(diào)遞增,; -----------7分
當時,,二次函數(shù)對稱軸,
∴在上單調(diào)遞減,在上單調(diào)遞增; ------------------------------8分
∴的極大值為,
當,即時,函數(shù)與軸只有唯一交點,即唯一零點,
由解之得
函數(shù)的零點為或(舍去);
----------------------10分
當,即時,函數(shù)與軸有兩個交點,即兩個零點,分別為
和; -----------------------11分
當,即時,函數(shù)與軸有三個交點,即有三個零點,
由解得,,
∴函數(shù)的零點為和。-----------12分
綜上可得,當時,函數(shù)的零點為;
當時,函數(shù)有一個零點,且零點為;
當時,有兩個零點和;
當時,函數(shù)有三個零點和www..com
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com