已知函數(shù)數(shù)學(xué)公式
(1) 判斷并證明函數(shù)f(x)的奇偶性
(2)判斷并證明當(dāng)x∈(-1,1)時函數(shù)f(x)的單調(diào)性;
(3)在(2)成立的條件下,解不等式f(2x-1)+f(x)<0.

解:(1)∵y=x2+1為偶函數(shù),y=x為奇函數(shù)
根據(jù)函數(shù)奇偶性的性質(zhì),我們易得
函數(shù)為奇函數(shù).
(2)當(dāng)x∈(-1,1)時
∵函數(shù)
f'(x)=>0恒成立
故f(x)在區(qū)間(-1,1)上為單調(diào)增函數(shù);
(3)在(2)成立的條件下,不等式f(2x-1)+f(x)<0可化為:

解得:
∴不等式的解集為
分析:(1)由于函數(shù)的定義域為R,關(guān)于原點對稱,故我們可利用函數(shù)奇偶性的性質(zhì)判斷方法來解答問題;
(2)由函數(shù)f(x)的解析式,我們易求出原函數(shù)的導(dǎo)函數(shù)的解析式,結(jié)合x∈(-1,1),確定導(dǎo)函數(shù)的符號,即可判斷函數(shù)的單調(diào)性;
(3)結(jié)合(1)、(2)的結(jié)論,我們可將原不等式轉(zhuǎn)化為一個關(guān)于x的不等式組,解不等式組即可得到答案.
點評:本題考查的知識點是函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷及函數(shù)性質(zhì)的綜合應(yīng)用,其中熟練掌握各種函數(shù)的性質(zhì)及應(yīng)用是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西)若函數(shù)h(x)滿足
①h(0)=1,h(1)=0;
②對任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調(diào)遞減.則稱h(x)為補函數(shù).已知函數(shù)h(x)=(
1-xp
1+λxp
)
1
p
(λ>-1,p>0)
(1)判函數(shù)h(x)是否為補函數(shù),并證明你的結(jié)論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p=
1
n
(n∈N+)時h(x)的中介元為xn,且Sn=
n
i=1
xi
,若對任意的n∈N+,都有Sn
1
2
,求λ的取值范圍;
(3)當(dāng)λ=0,x∈(0,1)時,函數(shù)y=h(x)的圖象總在直線y=1-x的上方,求P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(江西卷解析版) 題型:解答題

若函數(shù)h(x)滿足

(1)h(0)=1,h(1)=0;

(2)對任意,有h(h(a))=a;

(3)在(0,1)上單調(diào)遞減。則稱h(x)為補函數(shù)。已知函數(shù)

(1)判函數(shù)h(x)是否為補函數(shù),并證明你的結(jié)論;

(2)若存在,使得h(m)=m,若m是函數(shù)h(x)的中介元,記時h(x)的中介元為xn,且,若對任意的,都有Sn< ,求的取值范圍;

(3)當(dāng)=0,時,函數(shù)y= h(x)的圖像總在直線y=1-x的上方,求P的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理)已知函數(shù)數(shù)學(xué)公式
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且數(shù)學(xué)公式,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)已知函數(shù)
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案