20.函數(shù)f(x)=-x2+2x在[0,8]的最大值為1.

分析 對(duì)f(x)=-x2+2x配方即可求出f(x)在[0,8]上的最大值.

解答 解:f(x)=-x2+2x=-(x-1)2+1,x∈[0,8];
∴x=1時(shí)f(x)取最大值1;
即f(x)在[0,8]上的最大值為1.
故答案為:1.

點(diǎn)評(píng) 考查函數(shù)最大值的定義及求法,配方求二次函數(shù)在閉區(qū)間上的最大值的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知偶函數(shù)f(x)在[-1,0]上為單調(diào)增函數(shù),則( 。
A.f(sin$\frac{π}{8}$)<f(cos$\frac{π}{8}$)B.f(sin1)>f(cos1)
C.f(sin$\frac{π}{12}$)<f(sin$\frac{5π}{12}$)D.f(sin$\frac{π}{12}$)>f(tan$\frac{π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將一根繩子對(duì)折,然后用剪刀在對(duì)折過的繩子上任意一處剪斷,則得到的三條繩子的長度可以作為三角形的三邊形的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等比數(shù)列{an}中,a1=1,a10=3,則a2a3…a8a9等于( 。
A.243B.$27\root{5}{27}$C.$\sqrt{3}$D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若sin(2x+$\frac{π}{3}$)=a(|a|≤1),則cos($\frac{π}{6}$-2x)的值是( 。
A.-aB.aC.|a|D.±a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知{an}是公差為1的等差數(shù)列,Sn為{an}的前n項(xiàng)和,若S8=4S4,則a9等于(  )
A.$\frac{17}{2}$B.$\frac{19}{2}$C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知下列命題:
①“M>N”是“($\frac{2}{3}$)M<($\frac{2}{3}$)N”的充要條件.
②若函數(shù)y=f(x+1)為偶函數(shù),則y=f(x)的圖象關(guān)于x=1對(duì)稱;
③命題p:“?x∈R,x2-2≥0”的否定形式為非p:“?x∈R,x2-2<0”;
④命題“若x≠y,則sin x≠sin y”的逆否命題為真命題
其中正確的命題序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2${\sqrt{3}^{\;}}$,且AC,BD交于點(diǎn)O,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE;
(2)若E為PB的中點(diǎn),且二面角A-PB-D的余弦值為$\frac{{\sqrt{21}}}{7}$,求EC與平面PAB所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題p:指數(shù)函數(shù)y=(a-1)x在R上是單調(diào)函數(shù);命題q:?x∈R,x2-(3a-2)x+1=0.若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案