6.已知集合M={x∈Z|x≥x2},N={-1,0,1},則(∁RM)∩N={-1}.

分析 求出集合M,根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:M={x∈Z|x≥x2}={x∈Z|0≤x≤1}={0,1},
則(∁RM)={x|x≠0且x≠1},
則(∁RM)∩N={-1},
故答案為:{-1}.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax+$\frac{x}$(a>0)在點(diǎn)(1,f(1))處的切線與直線x+2y-1=0垂直
(1)求log4(a-b)的值
(2)若g(x)=f(x)-2lnx在區(qū)間[1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知θ的終邊經(jīng)過點(diǎn)P(a,a)(a≠0),求sinθ,cosθ,tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線y2=4x和以坐標(biāo)軸為對稱軸、實軸在y軸上的雙曲線相切,又直線y=2x被雙曲線截得線段長為2$\sqrt{5}$,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{y≤-x+2}\\{y≤x-1}\\{y≥0}\end{array}\right.$,則其圍成的平面區(qū)域的面積為(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-ak,a2k-1=(-1)k+1ak,k∈N*,記數(shù)列{an}的前n項和為Sn
(1)求S5、S7的值;
(2)求證:對任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在△ABC中,若$\frac{tanA}{tanB}$=$\frac{2c-b}$,$\frac{c}$=$\frac{\sqrt{3}+1}{2}$,求∠A、∠B、∠C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,正四面體ABCD的棱CD放置在水平面α內(nèi),且AB∥α,其俯視圖的外輪廓是邊長為a的正方形,則與這個正四面體的6條棱都相切的球的表面積為πa2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow{c}$=$\frac{5}{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案