【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,2cos(A﹣C)+cos2B=1+2cosAcosC.
(1)求證:a,b,c依次成等比數(shù)列;
(2)若b=2,求u=| |的最小值,并求u達(dá)到最小值時(shí)cosB的值.
【答案】
(1)證明:∵2cos(A﹣C)+cos2B=1+2cosAcosC,
∴2cosAcosC+2sinAsinC+1﹣2sin2B=1+2cosAcosC,
即2sinAsinC﹣2sin2B=0,
即sinAsinC=sin2B,
即ac=b2,
∴a,b,c依次成等比數(shù)列
(2)解:若b=2,則ac=4,
則u=| |=| |=|a﹣c|+| |≥2 ,
當(dāng)且僅當(dāng)|a﹣c|= 時(shí),u=| |取最小值2 ,
此時(shí)cosB= = = .
【解析】(1)將已知中2cos(A﹣C)+cos2B=1+2cosAcosC展開合并,再用正弦定理即可得到結(jié)論;(2)若b=2,則ac=4,利用基本不等式,可得當(dāng)且僅當(dāng)|a﹣c|= 時(shí),u=| |取最小值2 ,再由余弦定理,可得cosB的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用基本不等式在最值問題中的應(yīng)用和正弦定理的定義的相關(guān)知識(shí)可以得到問題的答案,需要掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”;正弦定理:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點(diǎn)為,在平面內(nèi)過點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣ )(x∈R),下面結(jié)論錯(cuò)誤的是( )
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線x=0對(duì)稱
D.函數(shù)f(x)是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=2cos2x﹣2acosx﹣1﹣2a的最小值為g(a),a∈R
(1)求g(a);
(2)若g(a)= ,求a及此時(shí)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形與梯形所在的平面互相垂直,
為的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,cos2B﹣5cos(A+C)=2.
(1)求角B的值;
(2)若cosA= ,△ABC的面積為10 ,求BC邊上的中線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com