已知點P(a,b)與點Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,則w=a-2b取值范圍是
 
考點:直線的斜率
專題:計算題,直線與圓
分析:點P(a,b)與點Q(1,0)在直線2x+3y-1=0的兩側(cè),那么把這兩個點代入2x+3y-1,它們的符號相反,結(jié)合a>0,b>0,畫出可行域,則w=a-2b的取值范圍.
解答: 解:點P(a,b)與點Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,
可得:
2a+3b-1<0
a>0
b>0
,可行域如圖:
w=a-2b經(jīng)過可行域的A與B時分別取得最大值與最小值.
∵A(0,
1
3
),B(
1
2
,0),
∴wA=-
2
3
,wB=
1
2
,∴w∈(-
2
3
,
1
2
).
故答案為:(-
2
3
,
1
2
).
點評:本題考查了線性規(guī)劃問題、直線的斜率計算公式及其單調(diào)性,考查了問題的轉(zhuǎn)化能力和推理能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項之和Sn=2n-1,則它的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體P-ABC,∠PAB=∠BAC=∠PAC=60°,|
AB
|=1,|
AC
|=2,|
AP
|=3,則|
AB
+
AC
+
AP
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
3-k
+
y2
2+k
=0表示焦點在x軸上的橢圓,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(-2,3)是函數(shù)y=
k
x
圖象上的點,Q是雙曲線在第四象限這一分支上的動點,過點Q作直線,使其與雙曲線y=
k
x
只有一個公共點,且與x軸、y軸分別交于點C、D,另一條直線y=
3
2
x+6與x軸、y軸分別交于點A、B.則
(1)O為坐標(biāo)原點,三角形OCD的面積為
 

(2)四邊形ABCD面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于△ABC,有如下四個命題:
①若sin2A=sin2B,則△ABC為等腰三角形,
②若sinB=cosA,則△ABC是直角三角形,
③若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,則△ABC為正三角形,
④若sin2A+sin2B+sin2C<2,則△ABC為鈍角三角形,
⑤若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
x2
2-x
(k+1)x-k
2-x
的解集為(1,2)∪(k,+∞),則實數(shù)k的范圍為( 。
A、(2,+∞)
B、(1,2)
C、(1,2)∪(3,+∞)
D、(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“α∈(
π
2
,π)”是“方程x2+y2cosα=1表示焦點在x軸上的雙曲線”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:“正數(shù)m的平方大于0”的否命題是(  )
A、正數(shù)m不是正數(shù),則它的平方大于0
B、若m不是正數(shù),則它的平方大于0
C、若m不是正數(shù),則它的平方不大于0
D、非正數(shù)m的平方大于0

查看答案和解析>>

同步練習(xí)冊答案