【題目】已知由實數(shù)組成的等比數(shù)列{an}的前項和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項公式;
(2)對n∈N* , bn= ,求數(shù)列{bn}的前n項和Tn

【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,

由8a4=a7,可得8= =q3,解得q=2.

∵S7=254,∴ =254,解得a1=2.

∴an=2n


(2)解:bn= = =

∴Tn= + +…+ =1﹣


【解析】(1)設(shè)等比數(shù)列{an}的公比為q,由8a4=a7 , 可得8= =q3 , 解得q.由S7=254, =254,解得a1 . (2)bn= = = ,利用“裂項求和”方法即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的經(jīng)過中心的弦稱為橢圓的一條直徑,平行于該直徑的所有弦的中點的軌跡為一條線段,稱為該直徑的共軛直徑,已知橢圓的方程為 .

(1)若一條直徑的斜率為 ,求該直徑的共軛直徑所在的直線方程;
(2)若橢圓的兩條共軛直徑為 ,它們的斜率分別為 ,證明:四邊形 的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.

(1)設(shè),征地面積為,求的表達式,并寫出定義域;

(2)當滿足取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,

求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個零點,則實數(shù)k的取值范圍是(
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有a個黑球和b個白球,隨機地每次從中取出一球,每次取后不放回,記事件A為“直到第k次才取到黑球”,其中1≤k≤b;事件B為“第7次取出的球恰好是黑球”,其中1≤k≤b。

(Ⅰ)若a=5,b=3,k=2,求事件A發(fā)生的概率;

(Ⅱ)判斷事件B發(fā)生的概率是否隨k取值的變化而變化?并說明理由;

(Ⅲ)比較a=5,b=9時事件A發(fā)生的概率與a=5,b=10時事件A發(fā)生的概率的大小,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天時間與水深(單位:米)的關(guān)系表:

時刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

(1)請用一個函數(shù)來近似描述這個港口的水深y與時間t的函數(shù)關(guān)系;

(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。

Ⅰ)如果該船是旅游船,1:00進港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

Ⅱ)如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風(fēng)等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線, , 是三個不同的平面,給出下列四個命題:

①若, ,則 ②若, , ,則

③若 ,則 ④若, ,則

其中正確命題的序號是( ).

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,直線.

(1)求圓心的軌跡方程;

(2)若,求直線被圓所截得弦長的最大值;

(3)若直線是圓心下方的切線,當上變化時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當時,.

(1)已畫出函數(shù)軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;

⑵寫出函數(shù)的解析式和值域.

查看答案和解析>>

同步練習(xí)冊答案