已知定義域為R的函數(shù)f(x)滿足f(x)=x2+x∫10at2dt≥-1,則實數(shù)a的取值范圍是
[-6,6]
[-6,6]
分析:根據(jù)定積分的意義,求出∫10at2dt的值,再解不等式f(x)≥-1,列出關于x的不等式,利用其恒成立即可得到實數(shù)a的取值范圍.
解答:解:∵∫01at2dt=
1
3
at3|01=
1
3
a,
x2+x∫10at2dt≥-1即x2+
1
3
xa+1≥0恒成立,
∴△=
1
9
a 2-4≤0
⇒-6≤x≤6,
則實數(shù)a的取值范圍是[-6,6]
故答案為[-6,6].
點評:本小題主要考查定積分、二次函數(shù)的性質、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設關于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4-x)=-f(x),當x<2時,f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值(  )

查看答案和解析>>

同步練習冊答案