已知函數(shù)f(x)=
mx2+mx+1
的定義域是一切實(shí)數(shù),則m的取值范圍是( 。
A、0<m≤4B、0≤m≤1
C、m≥4D、0≤m≤4
考點(diǎn):函數(shù)恒成立問題,函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義域是全體實(shí)數(shù),得到mx2+mx+1≥0恒成立,即可得到結(jié)論.
解答: 解:若函數(shù)f(x)=
mx2+mx+1
的定義域是一切實(shí)數(shù),
則等價(jià)為mx2+mx+1≥0恒成立,
若m=0,則不等式等價(jià)為1≥0,滿足條件,
若m≠0,則滿足
m>0
△=m2-4m≤0
,
m>0
0≤m≤4
,
解得0<m≤4,
綜上0≤m≤4,
故選:D
點(diǎn)評:本題主要考查函數(shù)恒成立,結(jié)合一元二次不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC=
2
3
AB,又P0⊥平面ABC,DA∥PO,DA=AO=
1
2
PO.
(I)求證:PB∥平面COD;
(II)求二面角O-CD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
(Ⅰ)求證:AB⊥PD;
(Ⅱ)若PA=PD=AB=2,問當(dāng)AD為何值時(shí),四棱錐P-ABCD的體積最大?并求其最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)0≤x≤2π時(shí),則不等式:sinx-cosx≥0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標(biāo)平面內(nèi)的兩點(diǎn)P、Q滿足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點(diǎn)對稱,則稱點(diǎn)對[P、Q]是函數(shù)y=f(x)的一對“友好點(diǎn)對”(點(diǎn)對[P、Q]與[Q、P]看作同一對“友好點(diǎn)對”).已知函數(shù)f(x)=
2
x
 
(x≤0)
x
2
 
-2x(x>0).
則此函數(shù)的“友好點(diǎn)對”有( 。
A、4對B、3對C、2對D、1對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是橢圓
x2
12
+
y2
4
=1上不同于左頂點(diǎn)A、右頂點(diǎn)B的任意一點(diǎn),記直線PA,PB的斜率分別為k1,k2,則k1•k2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=
1+an
1-an
(n∈N*),則連乘積a1•a2•a3•…•a2013•a2014的值為(  )
A、-6B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)M(2,1)作直線l,交橢圓
x2
25
+
y2
4
=1于A,B兩點(diǎn),如果點(diǎn)M恰好為線段AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等比數(shù)列{an}的公比q>1且Sn是它的前n項(xiàng)的和.若a1+a3=5,S3=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
5
2
+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案