【題目】下列說法中正確的個(gè)數(shù)是( )

(1) 已知,,則 

(2)將6個(gè)相同的小球放入4個(gè)不同的盒子中,要求不出現(xiàn)空盒,共有10種放法.

(3) 除后的余數(shù)為

(4) 若,則

(5)拋擲兩個(gè)骰子,取其中一個(gè)的點(diǎn)數(shù)為點(diǎn)的橫坐標(biāo),另一個(gè)的點(diǎn)數(shù)為點(diǎn)的縱坐標(biāo),連續(xù)拋擲這兩個(gè)骰子三次,點(diǎn)在圓內(nèi)的次數(shù)的均值為

A. 1B. 2C. 3D. 4

【答案】C

【解析】

1)中直接使用二項(xiàng)分布公式,,可計(jì)算

2)中相同元素分組采用隔板法,6個(gè)球中間5個(gè)空隙,分4組只需插入3個(gè)隔板即可;

3,展開式中除了最后一項(xiàng)1都是49的倍數(shù),都能被7整除;

4)偶數(shù)項(xiàng)的系數(shù)和只需分別令,再兩式相加減即可;

5)顯然服從二項(xiàng)分布,n=3,所以只需算出成功的概率P,然后用可計(jì)算.

解:,,,解得,(1)正確;

6個(gè)相同的小球放入4個(gè)不同的盒子中,要求不出現(xiàn)空盒,即每個(gè)盒子至少1個(gè),采用隔板法共種,(2)正確;,展開式中只有最后一項(xiàng)1不是7的倍數(shù),所以除后的余數(shù)為(3)錯(cuò)誤;在中,分別令,,兩式相加除以2得:,(4)正確;拋擲兩個(gè)骰子點(diǎn)共有36種情況,其中在圓內(nèi)的有(1,1)(1,2)、(1,3)、(2,1)、(2,2)(2,3)、(3,1)、(3,2)8種,所以擲這兩個(gè)骰子一次,點(diǎn)在圓內(nèi)的概率為,因?yàn)?/span>,所以的均值為(5)錯(cuò)誤;所以共有3個(gè)正確

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=log ( |x + 1| + |x- 1|- a ).

(I)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;

()若不等式fx的解集為R,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)頂點(diǎn)構(gòu)成的四邊形是一個(gè)正方形,且其周長為.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)過點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,若點(diǎn)總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列, , , .

(1)求, 的通項(xiàng)公式;

(2)的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖, 平面,四邊形為等腰梯形, .

(1)求證:平面平面;

(2)已知中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點(diǎn).

1)求證: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對(duì)分類討論求得函數(shù)在不同取值時(shí)的最大值.

試題解析】

(Ⅰ)

設(shè) ,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵,

∴當(dāng)時(shí), ,當(dāng)時(shí), ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

設(shè),

.

∵當(dāng)時(shí), ,∴上單調(diào)遞增.

又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .

①當(dāng)時(shí), ,即,這時(shí), ;

②當(dāng)時(shí), ,即,這時(shí), .

綜上, 上的最大值為:當(dāng)時(shí), ;

當(dāng)時(shí), .

[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過坐標(biāo)原點(diǎn)且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線軸所成的銳角為,直線軸所成的銳角為,判斷的大小關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】探究函數(shù)的圖像時(shí),列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.02

4.04

4.3

5

5.8

7.57

觀察表中y值隨x值的變化情況,完成以下的問題:

1)函數(shù)的遞減區(qū)間是 ,遞增區(qū)間是 ;

2)若對(duì)任意的恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案