15.投籃測試中,每人投3次,至少投中2次才能通過測試.己知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨立,則該同學(xué)通過測試的概率為( 。
A.0.648B.0.432C.0.36D.0.312

分析 判斷該同學(xué)投籃投中是獨立重復(fù)試驗,然后求解概率即可.

解答 解:由題意可知:同學(xué)3次測試滿足X∽B(3,0.6),
該同學(xué)通過測試的概率為${C}_{3}^{2}(0.6)^{2}×(1-0.6)+{C}_{3}^{3}({0.6)}^{3}$=0.648.
故選:A.

點評 本題考查獨立重復(fù)試驗概率的求法,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=sin2x+sinxcosx+1的最小正周期是π,單調(diào)遞減區(qū)間是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知x,y∈R,向量$\overrightarrow{α}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$是矩陣$[\begin{array}{l}{x}&{1}\\{y}&{0}\end{array}]$的屬于特征值-2的一個特征向量,求矩陣A以及它的另一個特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)橢圓E的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),點O為坐標(biāo)原點,點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為$\frac{{\sqrt{5}}}{10}$.
(1)求E的離心率e;
(2)設(shè)點C的坐標(biāo)為(0,-b),N為線段AC的中點,證明:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=e2x-alnx.
(Ⅰ)討論f(x)的導(dǎo)函數(shù)f′(x)零點的個數(shù);
(Ⅱ)證明:當(dāng)a>0時,f(x)≥2a+aln$\frac{2}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3+ax+$\frac{1}{4}$,g(x)=-lnx
(i)當(dāng) a為何值時,x軸為曲線y=f(x)的切線;
(ii)用min {m,n }表示m,n中的最小值,設(shè)函數(shù)h(x)=min { f(x),g(x)}(x>0),討論h(x)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m為實數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.${({{x^3}+\frac{1}{{2\sqrt{x}}}})^5}$的展開式中x8的系數(shù)是$\frac{5}{2}$(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A、B、C為△ABC的內(nèi)角,tanA,tanB是關(guān)于方程x2+$\sqrt{3}$px-p+1=0(p∈R)兩個實根.
(Ⅰ)求C的大小
(Ⅱ)若AB=3,AC=$\sqrt{6}$,求p的值.

查看答案和解析>>

同步練習(xí)冊答案