15.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),則|$\overrightarrow{a}$+$\overrightarrow$|的值為$\sqrt{3}$.

分析 由已知列式求得$\overrightarrow{a}•\overrightarrow$,再由$|\overrightarrow{a}+\overrightarrow|=\sqrt{(\overrightarrow{a}+\overrightarrow)^{2}}$,展開(kāi)后代入數(shù)量積得答案.

解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=$|\overrightarrow{a}{|}^{2}$-$2\overrightarrow{a}•\overrightarrow$=0,
∴$\overrightarrow{a}•\overrightarrow=\frac{1}{2}$,
則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{(\overrightarrow{a}+\overrightarrow)^{2}}=\sqrt{|\overrightarrow{a}{|}^{2}+|\overrightarrow{|}^{2}+2\overrightarrow{a}•\overrightarrow}$=$\sqrt{1+1+2×\frac{1}{2}}=\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查向量模的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知$\sqrt{3}$a=2csinA.
(1)求角C的值;
(2)若c=$\sqrt{7}$,且S△ABC=$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點(diǎn),G、H分別是BC,CD上的點(diǎn),且CG=$\frac{1}{3}$BC.CH=$\frac{1}{4}$CD,則直線FH與直線EG( 。
A.平行B.相交C.異面D.垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線$\sqrt{3}$x-y-2=0的傾斜角為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,三棱柱ABC-A1B1C1中,A1A=AB,CB⊥平面A1ABB1,
(Ⅰ)證明:AB1⊥平面A1BC;
(Ⅱ)若AC=5,BC=3,∠A1AB=60°,求三棱錐A-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=lnx-ax(a$>\frac{1}{2}$),當(dāng)x∈(-2,0)時(shí),f(x)的最小值為1,則a的值為(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=xex-aex-1,且f′(1)=e.
(1)求a的值及f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=kx2-2(k>2)存在兩個(gè)不相等的正實(shí)數(shù)根x1,x2,證明:|x1-x2|>ln($\frac{4}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\vec m=(sinx,\sqrt{3}cosx)$,$\vec n=(cosx,cosx)$,設(shè)函數(shù)$f(x)=\vec m•\vec n-\frac{3}{2}\sqrt{3}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若$x∈[-\frac{π}{3},\frac{π}{6}]$,且$F(x)=f(x)-cos(4x+\frac{2π}{3})$,求F(x)的最大值;
(Ⅲ)若[f(x)]2-(2+m)f(x)+2+m≤0在x∈R上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案