(1)函數(shù)y=,定義域是________,值域是________,單調(diào)遞增區(qū)間是________.

(2)函數(shù)f(x)的定義域為(0,1),則f(2-x)的定義域是_____________.

解析:(1)令y=(fx,f(x)=2x-x2,在f(x)=2x-x2中,x∈R.

∴y=(的定義域為R.

f(x)=2x-x2=-(x2-2x)=-(x-1)2+1≤1,

∵y=(fx為減函數(shù),

∴y∈[,+∞).

當(dāng)x∈[1,+∞).時,f(x)=2x-x2為減函數(shù),

又∵y=(fx為減函數(shù),

∴y=的單調(diào)遞增區(qū)間為[1,+∞).

(2)∵f(x)的定義域為(0,1),

∴0<2-x<1,即0<(x<1.

∴x∈(0,+∞).

∴f(2-x)的定義域是(0,+∞).

答案:(1)     [,+∞)       [1,+∞)

(2)(0,+∞).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域為R,值域為[0,
1
2
]
;
②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)在[-
1
2
,
1
2
]
上是增函數(shù).
其中正確的命題的序號是(  )
A、①B、②③C、①②③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)y=|logax|的定義域為[m,n](m<n),值域為[0,1],定義“區(qū)間[m,n]的長度等于n-m”,若區(qū)間[m,n]長度的最小值為
5
6
,則實數(shù)a的值內(nèi)(  )
A、11
B、6
C、
11
6
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z),則稱m為離實數(shù)x最近的整數(shù),記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的五個命題:
①函數(shù)y=f(x)的定義域為R,值域為[0,
1
2
]
;
②函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
③函數(shù)y=f(x)在[-
1
2
1
2
]
上是增函數(shù);
④函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱;
⑤函數(shù)y=f(x)的圖象關(guān)于點(k,0)(k∈Z)對稱.
其中正確的命題有( 。﹤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(x-2)=-f(x)對一切x∈R都成立,又當(dāng)x∈[-1,1]時,f(x)=x3,則下列五個命題:
①函數(shù)y=f(x)是以4為周期的周期函數(shù);
②當(dāng)x∈[1,3]時,f(x)=( x-2)3;
③直線x=±1是函數(shù)y=f(x)圖象的對稱軸;
④點(2,0)是函數(shù)y=f(x)圖象的對稱中心;
⑤函數(shù)y=f(x)在點(
3
2
,f(
3
2
))處的切線方程為3x-y-5=0.
其中正確的是
①③
①③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•密云縣一模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域為R,值域為[0,
1
2
]

②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)在[-
1
2
1
2
]
上是增函數(shù).
其中正確的命題的個數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案