在△OAB中,O為坐標(biāo)原點(diǎn),A(1,cosθ).B(sinθ,1),θ∈(0,],則當(dāng)△OAB的面積達(dá)最大值時(shí),θ等于

[  ]

A.

B.

C.

D.

答案:D
解析:

  解折:∵a·b=sinθ+cosθ,∴(a·b)2=1+sin2θ,且(|a|·|b|)2=(1+cos2θ)·(1+sin2θ)=2+sin22θ.

  由三角形面積公式,得

  S△OAB=

     =

     =

  又∵θ∈(0,),∴sin2θ∈[0,1],

  故當(dāng)θ=時(shí),S△OAB最大,應(yīng)選D.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,O為坐標(biāo)原點(diǎn),A(1,cosθ),B(sinθ,1),θ∈(0,
π
2
]
,則當(dāng)△OAB的面積達(dá)最大值時(shí),θ=( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,O為坐標(biāo)原點(diǎn),A(1,cosθ),B(sin θ,1),則△OAB的面積的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)在△OAB中,O為坐標(biāo)原點(diǎn),A(-1,cosθ),B(sinθ,1),θ∈[0,
π
2
]
.(1)若|
OA
+
OB
|=|
OA
-
OB
|,則θ
=
π
4
π
4
,(2)△OAB的面積最大值為
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,O為坐標(biāo)原點(diǎn),A(1,cosθ),B(sinθ,1),θ∈(0,
π
2
]
,則當(dāng)△OAB的面積達(dá)最大值時(shí),則θ=
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,O為坐標(biāo)原點(diǎn),,則當(dāng)△OAB的面積達(dá)最大值時(shí),(    )

  A.    B.    C.    D.

查看答案和解析>>

同步練習(xí)冊答案