【題目】下面程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的為( )

A. 0 B. 2 C. 4 D. 14

【答案】B

【解析】a=14,b=18,ab,

b變?yōu)?/span>18﹣14=4,

ab,則a變?yōu)?/span>14﹣4=10,

ab,則a變?yōu)?/span>10﹣4=6,

ab,則a變?yōu)?/span>6﹣4=2,

ab,則b變?yōu)?/span>4﹣2=2,

a=b=2,

則輸出的a=2.

故選B.

點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體EFABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,ABCD,ADDCAD=2,AB=4,ADF=90°

求證:ACFB

求二面角EFBC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m∈R,復(fù)數(shù)z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i為虛數(shù)單位.
(1)當(dāng)m為何值時,復(fù)數(shù)z是虛數(shù)?
(2)當(dāng)m為何值時,復(fù)數(shù)z是純虛數(shù)?
(3)當(dāng)m為何值時,復(fù)數(shù)z所對應(yīng)的點在復(fù)平面內(nèi)位于第四象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{bn}滿足bn=3bn1+2(n≥2),b1=1.?dāng)?shù)列{an}的前n項和為Sn , 滿足Sn=4an+2
(1)求證:{bn+1}是等比數(shù)列并求出數(shù)列{bn}的通項公式;
(2)求數(shù)列{an}的通項公式和前n項和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓弧.

(1)若圓形標(biāo)志物半徑為25m,以PG所在直線為x軸,G為坐標(biāo)原點,建立直角坐標(biāo)系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標(biāo)志的最大視角(即∠APF)的正切值為 ,求該圓形標(biāo)志物的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:x2+y2=r2(r>0),點P為圓O上任意一點(不在坐標(biāo)軸上),過點P作傾斜角互補的兩條直線分別交圓O于另一點A,B.
(1)當(dāng)直線PA的斜率為2時,
①若點A的坐標(biāo)為(﹣ ,﹣ ),求點P的坐標(biāo);
②若點P的橫坐標(biāo)為2,且PA=2PB,求r的值;
(2)當(dāng)點P在圓O上移動時,求證:直線OP與AB的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 的中點,底面為矩形, , ,且平面平面,平面與棱交于點,平面與平面交于直線.

(1)求證: ;

(2)求與平面所成角的正弦值為,求的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足記數(shù)列的前項和為,

1)求證:數(shù)列為等比數(shù)列,并求其通項;

2)求;

3)問是否存在正整數(shù),使得成立?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C對邊分別為a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,則△ABC的面積為

查看答案和解析>>

同步練習(xí)冊答案