已知一個(gè)動(dòng)圓與圓C:(x+4)2+y2=100相內(nèi)切,且過(guò)點(diǎn)A(4,0),則動(dòng)圓圓心的軌跡方程
x2
25
+
y2
16
=1
x2
25
+
y2
16
=1
分析:設(shè)動(dòng)圓圓心為B,圓B與圓C的切點(diǎn)為D,根據(jù)相內(nèi)切的兩圓性質(zhì)證出|CB|=10-|BD|=10-|BA|,可得|BA|+|BC|=10,
從而得到B的軌跡是以A、C為焦點(diǎn)的橢圓,根據(jù)橢圓的標(biāo)準(zhǔn)方程與基本概念加以計(jì)算,可得所求軌跡方程.
解答:解:設(shè)動(dòng)圓圓心為B,半徑為r,圓B與圓C的切點(diǎn)為D,
∵圓C:(x+4)2+y2=100的圓心為C(-4,0),半徑R=10,
∴由動(dòng)圓B與圓C相內(nèi)切,可得|CB|=R-r=10-|BD|,
∵圓B經(jīng)過(guò)點(diǎn)A(4,0),
∴|BD|=|BA|,得|CB|=10-|BA|,可得|BA|+|BC|=10,
∵|AC|=8<10,
∴點(diǎn)B的軌跡是以A、C為焦點(diǎn)的橢圓,
設(shè)方程為
x2
a2
+
y2
b2
=1
(a>b>0),可得2a=10,c=4,
∴a=5,b2=a2-c2=16,得該橢圓的方程為
x2
25
+
y2
16
=1

故答案為:
x2
25
+
y2
16
=1
點(diǎn)評(píng):本題給出動(dòng)圓滿足的條件,求動(dòng)圓圓心的軌跡方程.著重考查了圓的標(biāo)準(zhǔn)方程、圓與圓的位置關(guān)系和動(dòng)點(diǎn)軌跡方程的求法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)動(dòng)圓與圓C:(x+4)2+y2=100相內(nèi)切,且過(guò)點(diǎn)A(4,0),求這個(gè)動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)動(dòng)圓與圓C: 相內(nèi)切,且過(guò)點(diǎn)A(4,0),求這個(gè)動(dòng)圓圓心的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知一個(gè)動(dòng)圓與圓C:相內(nèi)切,且過(guò)點(diǎn)A(4,0),則這個(gè)動(dòng)圓圓心的軌跡方程是_______________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:海南省期中題 題型:解答題

已知一個(gè)動(dòng)圓與圓C:(x+4)2+y2=100相內(nèi)切,且過(guò)點(diǎn)A(4,0),求這個(gè)動(dòng)圓圓心的軌跡方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案