9.在區(qū)間[-5,5]內(nèi)隨機地取出一個數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax-a2<0的一個解的概率為(  )
A.0.3B.0.4C.0.6D.0.7

分析 本題是幾何概型問題,欲求1是關(guān)于x的不等式2x2+ax-a2<0的一個解的概率大小,先由1是關(guān)于x的不等式2x2+ax-a2<0的一個解,求出其關(guān)于a的不等關(guān)系,再根據(jù)幾何概型概率公式結(jié)合區(qū)間的長度的方法易求解.

解答 解:本題是幾何概型問題,測度為長度.
由恰好使1是關(guān)于x的不等式2x2+ax-a2<0得:2×12+a×1-a2<0⇒a<-1或a>2.
∴“恰好使1是關(guān)于x的不等式2x2+ax-a2<0的一個解的概率”事件對應的區(qū)域長度為7.
則恰好使1是關(guān)于x的不等式2x2+ax-a2<0的一個解的概率是0.7.
故選:D.

點評 本小題主要考查幾何概型、幾何概型的應用、區(qū)間及方程的根的概念等基礎知識,考查化歸與轉(zhuǎn)化思想.屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.設函數(shù)y=f(x)在區(qū)間(a,b)上的導函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導函數(shù)為f″(x),若區(qū)間(a,b)上f″(x)>0.則稱函數(shù)f(x)在區(qū)間(a,b)上為“凹函數(shù)”,己知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上為“凹函數(shù)”.則實數(shù)m的取值范圍是m≤-3..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x.
(1)求f(x)的最小周期和最小值;
(2)當x∈[$\frac{π}{2},π}$]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列命題中,正確的是( 。
A.有兩個側(cè)面是矩形的棱柱是直棱柱
B.側(cè)面都是等腰三角形的棱錐是正棱錐
C.側(cè)面都是矩形的直四棱柱是長方體
D.底面為正多邊形,且有相鄰兩個側(cè)面與底面垂直的棱柱是正棱柱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若將函數(shù)y=cos 2x的圖象向左平移$\frac{π}{12}$個單位長度,則平移后圖象的對稱軸為( 。
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={x|x2-2015x+2014<0},B={x|log2x<m},若A∩B=A,則整數(shù)m的最小值是(  )
A.0B.1C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如果實數(shù)a,b滿足:a<b<0,則下列不等式中不成立的是( 。
A.|a|>|b|B.$\frac{1}{a-b}>\frac{1}{a}$C.$\frac{1}<\frac{1}{a}$D.b2-a2<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.袋中有黑球和白球共7個球,已知從中任取2個球都是白球的概率為$\frac{1}{7}$.現(xiàn)有甲、乙兩人從袋中輪流摸球(甲先),每次摸出1球且不放回,直到摸出白球為止.則袋中原有白球的個數(shù)為3,甲摸到白球而終止的概率為$\frac{22}{35}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知命題p:對任意x∈R,總有3x≤0;命題q:“x>2”是“x>4”的充分不必要條件,則下列命題為真命題的是( 。
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

同步練習冊答案