為了解某市市民對(duì)政府出臺(tái)樓市限購令的態(tài)度,在該市隨機(jī)抽取了50名市民進(jìn)行調(diào)查,他們?cè)率杖耄▎挝唬喊僭┑念l數(shù)分布及對(duì)樓市限購令的贊成人數(shù)如下表:
月收入[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)488521
將月收入不低于55的人群稱為“高收入族”,月收入低于55的人群稱為“非高收人族”.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,有多大的把握認(rèn)為贊不贊成樓市限購令與收入高低有關(guān)?
已知:Χ2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
當(dāng)Χ2<2.706時(shí),沒有充分的證據(jù)判定贊不贊成樓市限購令與收入高低有關(guān);
當(dāng)Χ2>2.706時(shí),有90%的把握判定贊不贊成樓市限購令與收入高低有關(guān);
當(dāng)Χ2>3.841時(shí),有95%的把握判定贊不贊成樓市限購令與收入高低有關(guān);
當(dāng)Χ2>6.635時(shí),有99%的把握判定贊不贊成樓市限購令與收入高低有關(guān).
非高收入族高收入族總計(jì)
贊成
不贊成
總計(jì)
(Ⅱ)現(xiàn)從月收入在[55,65)的人群中隨機(jī)抽取兩人,求所抽取的兩人中至少一人贊成樓市限購令的概率.
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(Ⅰ)可根據(jù)頻數(shù)分布表中的數(shù)據(jù),很容易完成2×2列聯(lián)表,由2×2列聯(lián)表中數(shù)據(jù),計(jì)算X2的值,與臨界值比較,即可得到結(jié)論;
(Ⅱ)設(shè)月收入在55,65的5人編號(hào),a,b,c,m,n(m,n為贊成的2人編號(hào)),列出任取2人共10種結(jié)果,含有贊成的共7種情況,根據(jù)古典概型的公式進(jìn)行求解即可.
解答: 解:(Ⅰ)
非高收入族高收入族總計(jì)
贊成25328
不贊成15722
總計(jì)401050
…(2分)
X2=
50(25×7-15×3)2
40×10×22×28
≈3.43,
故有90%的把握認(rèn)為樓市限購令與收入高低有關(guān).…(6分)
(2)設(shè)月收入在55,65的5人編號(hào),a,b,c,m,n(m,n為贊成的2人編號(hào))
任取2人共10種結(jié)果,ab.a(chǎn)c.a(chǎn)m,an,bc,bm,bn,cm,cn,mn         …(8分)
其中含有贊成的共7種情況,am,an,bm,bn,cm,cn,mn
因此所求概率P=
7
10
.             …(12分)
點(diǎn)評(píng):本題考查2×2列聯(lián)表的作法,考查獨(dú)立性檢驗(yàn)知識(shí),考查古典概率的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a4-1)3+2013(a4-1)=1,(a2010-1)3+2013(a2010-1)=-1,則下列結(jié)論中正確的是(  )
A、S2013=2013,a2010<a4
B、S2013=2013,a2010>a4
C、S2013=2012,a2010≤a4
D、S2013=2012,a2010≥a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且Sn=
an(an+1)
2
,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)bn=(2an-1)2 an,Mn=b1+b2+…+bn,求Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為,
x=2+tcosa
y=1+tsina
(t是參數(shù)0≤a<x)以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=
2
1+cos2θ

(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)當(dāng)α=
π
4
時(shí),曲線C1和C2相交于M、N兩點(diǎn),求以線段MN為直徑的圓的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=3,
a
b
的夾角為θ,且tanθ=
3

(1)求
a
b
的值;        
(2)求|
a
-
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1
anan+2
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P在[0,5]上隨機(jī)地取值,則關(guān)于x的方程x2+px+1=0有實(shí)數(shù)根的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+b
2x+1+a
是奇函數(shù).
(Ⅰ)求a、b的值;
(Ⅱ)求函數(shù)g(x)=(logax)2-logax2-2b在x∈[
1
2
,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,橢圓的上頂點(diǎn)和兩焦點(diǎn)連線構(gòu)成等邊三角形且面積為
3

(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:x=my+q(m≠0)與橢圓Γ交于不同的兩點(diǎn)A、B,設(shè)點(diǎn)A關(guān)于橢圓長軸的對(duì)稱點(diǎn)為A1,試求A1、F、B三點(diǎn)共線的充要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案