若原點(diǎn)O和點(diǎn)F(-2,0)分別為雙曲線-y2=1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則的取值范圍為( )
A.[3-2,+∞) B.[3+2,+∞)
C.[-,+∞) D.[,+∞)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,己知圓P在x軸上截得線段長為2,在y軸上截得線段長為2.
(1)求圓心P的軌跡方程;
(2)若P點(diǎn)到直線y=x的距離為,求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過拋物線C:x2=2py(p>0)的焦點(diǎn)F作直線l與拋物線C交于A、B兩點(diǎn),當(dāng)點(diǎn)A的縱坐標(biāo)為1時,|AF|=2.
(1)求拋物線C的方程;
(2)若直線l的斜率為2,問拋物線C上是否存在一點(diǎn)M,使得MA⊥MB,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓C1的離心率為,焦點(diǎn)在x軸上且長軸長為26.若曲線C2上的點(diǎn)到橢圓C1的兩個焦點(diǎn)的距離的差的絕對值等于8,則曲線C2的標(biāo)準(zhǔn)方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-).
(1)求雙曲線的方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·=0;
(3)在(2)的條件下,求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,其漸近線與圓x2+y2-10x+20=0相切.過點(diǎn)P(-4,0)作斜率為的直線l,交雙曲線左支于A、B兩點(diǎn),交y軸于點(diǎn)C,且滿足|PA|·|PB|=|PC|2.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)M為雙曲線上一動點(diǎn),點(diǎn)N為圓x2+(y-2)2=上一動點(diǎn),求|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)N(1,2),過點(diǎn)N的直線交雙曲線x2-=1于A,B兩點(diǎn),且
(1)求直線AB的方程;
(2)若過N的另一條直線交雙曲線于C,D兩點(diǎn),且=0,那么A,B,C,D四點(diǎn)是否共圓?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
將兩個頂點(diǎn)在拋物線y2=2px(p>0)上,另一個頂點(diǎn)是此拋物線焦點(diǎn)的正三角形個數(shù)記為n,則( )
A.n=0 B.n=1
C.n=2 D.n≥3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com