設(shè)y1=0.4,y2=0.5,y3=0.5,則

[  ]
A.

y3<y2<y1

B.

y1<y2<y3

C.

y2<y3<y1

D.

y1<y3<y2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:訓(xùn)練必修四數(shù)學(xué)人教A版 人教A版 題型:013

設(shè)mn是兩個(gè)非零向量,且m=(x1,y1),n=(x2,y2),則以下等式中與mn等價(jià)的個(gè)數(shù)有

m·n=0

②x1x2=-y1y2

③|mn|=|mn|

④|m+B|=

[  ]
A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省福州三中2012屆高三第四次月考數(shù)學(xué)理科試題 題型:044

設(shè)復(fù)數(shù)z對應(yīng)復(fù)平面上點(diǎn)P,且復(fù)數(shù)z滿足|z-1|+|Rez-4|=5(其中Rez表示復(fù)數(shù)z的實(shí)部),動(dòng)點(diǎn)P的軌跡為曲線C.

(1)求曲線C的過程;

(2)設(shè)過點(diǎn)F(1,0)的直線l與曲線C交于A(x1,y1),B(x2,y2)(x1<4<x2)兩點(diǎn),且A、B在x軸上的正投影分別為C、D,求證AB|+|CD|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過點(diǎn)T(t,m)的直線TATB與此橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設(shè)動(dòng)點(diǎn)P滿足PF2PB2=4,求點(diǎn)P的軌跡;

(2)設(shè)x1=2,x2,求點(diǎn)T的坐標(biāo);

(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的長軸長為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得.

(1)求橢圓的標(biāo)準(zhǔn)方程;           (2)求直線l的方程.

【解析】(1)中利用點(diǎn)F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

同步練習(xí)冊答案