當(dāng)x=
π
4
時,函數(shù)f(x)=Asin(x+φ)(A>0)取得最小值,則函數(shù)y=f(
4
-x)
是( 。
A.奇函數(shù)且圖象關(guān)于點(
π
2
,0)
對稱
B.偶函數(shù)且圖象關(guān)于點(π,0)對稱
C.奇函數(shù)且圖象關(guān)于直線x=
π
2
對稱
D.偶函數(shù)且圖象關(guān)于點(
π
2
,0)
對稱
∵f(
π
4
)=sin(
π
4
+φ)=-1,
π
4
+φ=2kπ-
π
2
,
∴φ=2kπ-
4
(k∈Z),
∴y=f(
4
-x)=Asin(
4
-x+2kπ-
4
)=-Asinx,
令y=g(x)=-Asinx,則g(-x)=-Asin(-x)=Asinx=-g(x),
∴y=g(x)是奇函數(shù),可排除B,D;
其對稱軸為x=kπ+
π
2
,k∈Z,對稱中心為(kπ,0)k∈Z,可排除A;
令k=0,x=
π
2
為一條對稱軸,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[-
π
2
,π]
上的函數(shù)y=f(x)的圖象關(guān)于直線x=
π
4
對稱,當(dāng)x≥
π
4
時,函數(shù)f(x)=sinx.
(Ⅰ)求f(-
π
2
)
,f(-
π
4
)
的值;
(Ⅱ)求y=f(x)的函數(shù)表達(dá)式;
(Ⅲ)如果關(guān)于x的方程f(x)=a有解,那么將方程在a取某一確定值時所求得的所有解的和記為Ma,求Ma的所有可能取值及相對應(yīng)的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰安一模)當(dāng)x=
π
4
時,函數(shù)f(x)=Asin(x+φ)(A>0)取得最小值,則函數(shù)y=f(
4
-x)
是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c,
(1)若當(dāng)且僅當(dāng)x=-2時,函數(shù)f(x)取得最小值-2,求函數(shù)f(x)的表達(dá)式;
(2)在(1)的條件下,若方程f(x)=x+a(a∈R)至少有一個負(fù)根,求a取值的集合;
(3)若f(x)滿足條件:
f(2)≤12
f(-1)≤3
求f(1)的取值范圍;
(4)若0≤b≤4,0≤c≤4,且b,c∈Z,記函數(shù)f(x)滿足條件(2)的事件為A,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值,且函數(shù)f(x)圖象上以點A(3,f(3))為切點的切線與直線5x-y+1=0平行.
(I)求函數(shù)f(x)的解析式;
(II)以點A(3,f(3))為切點的切線方程;
(III)若方程f(x)=k有3個解,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案