如圖,已知橢圓的中心在坐標(biāo)原點,焦點F1,F(xiàn)2在x軸上,長軸A1A2的長為4,左準(zhǔn)線l與x軸的交點為M

(Ⅰ)求橢圓的方程;

(Ⅱ)過點M的直線與橢圓交于C、D兩點,若,求直線的方程.

答案:
解析:

  解答:(Ⅰ)設(shè)橢圓方程為,半焦距為,

  則

  

  

   5分

  (Ⅱ)點M的坐標(biāo)為,設(shè)C、D兩點的坐標(biāo)分別為的方程為,代入橢圓方程并整理得:

   ①

  則、

  由得:,、

  又,、

  由②③④得:, 10分

  解得:,代入①有檢驗有

  得所求直線的方程為 12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在坐標(biāo)原點,焦點F1,F(xiàn)2在x軸上,長軸A1A2的長為4,左準(zhǔn)線l與x軸的交點為M,|MA1|:|A1F1|=2:1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l1:x=m(|m|>1),P為l1上的動點,使∠F1PF2最大的點P記為Q,求點Q的坐標(biāo)(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,且經(jīng)過點M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點.
(1)求橢圓的方程;
(2)當(dāng)|AB|=
12
5
2
時,求m的值;
(3)若直線l不過點M,求證:直線MA,MB與x軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在坐標(biāo)原點,焦點在x軸上,它的一個頂點為A(0,
2
),且離心率為
3
2

( I)求橢圓的標(biāo)準(zhǔn)方程;
( II)過點M(0,2)的直線l與橢圓相交于不同兩點P、Q,點N在線段PQ上.設(shè)
|
MP
|
|
PN
|
=
|
MQ
|
|
NQ
|
=λ,試求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)如圖,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l交橢圓于A、B兩個不同點(A、B與M不重合).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)MA⊥MB時,求m的值.

查看答案和解析>>

同步練習(xí)冊答案