正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)為2,若直線AB1與平面ACC1A1所成角為45°,則棱柱的高為( 。
A、2
2
B、2
C、
2
D、1
分析:畫出圖形,由題意求出相關(guān)數(shù)據(jù):B1D、AD、∠ADB1,然后在△A1AD中求出A1A,即棱柱的高.
解答:精英家教網(wǎng)解:正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)為2,
若直線AB1與平面ACC1A1所成角為45°,取C1A1
中點(diǎn)D,連接DB1、AD所以∠B1AD=45°,
DB1=AD 因?yàn)榈酌孢呴L(zhǎng)為2,AD=
3

所以AA1=
2

故選C.
點(diǎn)評(píng):本題考查棱柱的結(jié)構(gòu)特征,空間想象能力,以及作圖能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在 正三棱柱ABC-A1 B1 C1中,底面邊長(zhǎng)為
2

(1)設(shè)側(cè)棱長(zhǎng)為1,求證A B1⊥B C1
(2)設(shè)A B1與B C1成600角,求側(cè)棱長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1 B1 C1中,AA1=4,AB=2,M是AC的中點(diǎn),點(diǎn)N在AA1上,AN=
1
4

(1)求BC1與側(cè)面AC C1 A1所成角的正弦值;
(2)證明:MN⊥B C1;
(3)求二面角C-C1B-M的平面角的正弦值,若在△A1B1C1中,
C1E
=
1
3
EA1
,
C1F
=
1
4
FB1
,
C1H
=x
C1A1
+y
C1B1
,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB=數(shù)學(xué)公式=a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1996年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案