定義在R上的奇函數(shù)f(x),當x>0時,f(x)=2;則奇函數(shù)f(x)的值域是 ________.

{-2,0,2}
分析:根據(jù)函數(shù)是在R上的奇函數(shù)f(x),求出f(0);再根據(jù)x>0時的解析式,求出x<0的解析式,從而求出函數(shù)在R上的解析式,即可求出奇函數(shù)f(x)的值域.
解答:∵定義在R上的奇函數(shù)f(x),
∴f(-x)=-f(x),f(0)=0
設x<0,則-x>0時,f(-x)=-f(x)=-2
∴f(x)=
∴奇函數(shù)f(x)的值域是:{-2,0,2}
故答案為:{-2,0,2}
點評:本題主要考查了函數(shù)奇偶性的性質,以及函數(shù)值的求解和分段函數(shù)的表示等有關知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(2x)=-2f(x),f(-1)=
1
2
,則f(2)的值為( 。
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)在(0,+∞)上是增函數(shù),又f(-3)=0,則不等式xf(x)<0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)在[0,+∞)是增函數(shù),判斷f(x)在(-∞,0)上的增減性,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當x>0時,f(x)=2010x+log2010x,則方程f(x)=0的實根的個數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x),當x≥0時,f(x)=x3+x2,則f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步練習冊答案