設(shè)F1、F2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點,P為橢圓上一個點,∠F1PF2=60°,|F1F2|為|PF1|與|PF2|的等比中項,則該橢圓的離心率為( 。
分析:利用|F1F2|為|PF1|與|PF2|的等比中項,余弦定理及橢圓的定義,確定幾何量之間的關(guān)系,即可求得橢圓的離心率.
解答:解:設(shè)|F1F2|=2c,|PF1|=m,|PF2|=n,則m+n=2a
∵|F1F2|為|PF1|與|PF2|的等比中項,∴4c2=mn
∵∠F1PF2=60°,
∴4c2=m2+n2-mn
∴4c2=(m+n)2-3mn
∴16c2=4a2
∴a=2c
∴e=
c
a
=
1
2

故選A.
點評:本題考查橢圓的幾何性質(zhì),考查余弦定理的運用,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,P為直線x=
3a
2
上一點,△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)設(shè)F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦點,A、B分別為其左頂點和上頂點,△BF1F2是面積為
3
的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點F2的直線l交橢圓C于M,N兩點,直線AM、AN分別與已知直線x=4交于點P和Q,試探究以線段PQ為直徑的圓與直線l的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓G與雙曲線12x2-4y2=3有相同的焦點,且過點P(1,
32
)

(1)求橢圓G的方程;
(2)設(shè)F1、F2是橢圓G的左焦點和右焦點,過F2的直線l:x=my+1與橢圓G相交于A、B兩點,請問△ABF1的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個最大值及直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P為直線x=
3a
2
上一點,△F2PF1是底角為30°的等腰三角形,則橢圓E的離心率為
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湛江二模)設(shè)F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點,若直線x=ma (m>1)上存在一點P,使△F2PF1是底角為30°的等腰三角形,則m的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案