9.設(shè)函數(shù)f(x)=(1-ax)ln(x+1)-bx,其中a和b是實數(shù),曲線y=f(x)恒與x軸相切于坐標原點.
(1)求常數(shù)b的值;
(2)當(dāng)a=1時,討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)0≤x≤1時關(guān)于x的不等式f(x)≥0恒成立,求實數(shù)a的取值范圍.

分析 (1)對f(x)求導(dǎo),根據(jù)條件知f'(0)=0,所以1-b=0;
(2)當(dāng)a=1時,f(x)=(1-x)ln(x+1)-x,f(x)的定義域為(-1,+∞);令f'(x)=0,則導(dǎo)函數(shù)零點x+1=1,故x=0;
當(dāng)x∈(-1,0),f'(x)>0,f(x)在(-1,0)上單調(diào)遞增;當(dāng)x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上單調(diào)遞減;
(3)因為f(x)=(1-ax)ln(x+1)-x,0≤x≤1,對a進行分類討論根據(jù)函數(shù)的單調(diào)性求得參數(shù)a使得不等式f(x)≥0;

解答 解:(1)對f(x)求導(dǎo)得:
f'(x)=-aln(x+1)+$\frac{1-ax}{x+1}-b$
根據(jù)條件知f'(0)=0,所以1-b=0,
故b=1.
(2)當(dāng)a=1時,f(x)=(1-x)ln(x+1)-x,f(x)的定義域為(-1,+∞)
f'(x)=-ln(x+1)+$\frac{1-x}{x+1}$-1=-ln(x+1)+$\frac{2}{x+1}$-2
令f'(x)=0,則導(dǎo)函數(shù)零點x+1=1,故x=0;
當(dāng)x∈(-1,0),f'(x)>0,f(x)在(-1,0)上單調(diào)遞增;
當(dāng)x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上單調(diào)遞減;
(3)由(1)知,f(x)=(1-ax)ln(x+1)-x,0≤x≤1
f'(x)=-aln(x+1)+$\frac{1-ax}{1+x}$-1
f''(x)=-$\frac{ax+2a+1}{(1+x)^{2}}$
①當(dāng)a$≤\frac{1}{2}$時,因為0≤x≤1,有f''(x)≥0,于是f'(x)在[0,1]上單調(diào)遞增,從而f'(x)≥f'(0)=0,
因此f(x)在[0,1]上單調(diào)遞增,即f(x)≥f(0)而且僅有f(0)=0;
②當(dāng)a≥0時,因為0≤x≤1,有f''(x)<0,于是f'(x)在[0,1]上單調(diào)遞減,從而f'(x)≤f'(0)=0,
因此f(x)在[0,1]上單調(diào)遞減,即f(x)≤f(0)=0而且僅有f(0)=0;
③當(dāng)-$\frac{1}{2}$<a<0時,令m=min{1,-$\frac{2a+1}{a}$},當(dāng)0≤x≤m時,f''(x)<0,于是f'(x)在[0,m]上單調(diào)遞減,從而f'(x)≤f'(0)=0
因此f(x)在[0,m]上單調(diào)遞減,即f(x)≤f(0)而且僅有f(0)=0;
綜上:所求實數(shù)a的取值范圍是(-∞,-$\frac{1}{2}$].

點評 本題主要考查了導(dǎo)數(shù)的定義,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及分類討論與函數(shù)的最值問題,屬中等題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),點A($\sqrt{2}$,1)是橢圓上的一點,且橢圓C的離心率為$\frac{{\sqrt{2}}}{2}$,直線AO與橢圓C交于點B,且C,D是橢圓上異于A,B的任意兩點,直線AC,BD相交于點M,直線AD,BC相交于點N.
(1)求橢圓C的方程;
(2)求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若x∈R,則“-2≤x≤3”是“|x|<2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若正項等比數(shù)列{an}滿足a2+a4=3,a3a5=2,則該數(shù)列的公比q=$\sqrt{\frac{3\sqrt{2}+2}{7}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線l與橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1相切于點P,與直線x=4交于點Q,以PQ為直徑的圓過定點M,則M必在直線( 。┥希
A.x=0B.y=0C.y=1D.x=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)是側(cè)面對角線BC1,AD1上一點,若BED1F是菱形,則其在底面ABCD上投影的四邊形面積(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{3-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列函數(shù)中,在區(qū)間(0,+∞)上不是增函數(shù)的是④.
①y=2x②y=lgx③y=x3④y=$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn;
(3)若$\frac{a_n}{b_n}$=$\frac{2n+3}{n+1}$,求證:$\frac{5}{6}$≤$\frac{1}{b_1}$+$\frac{1}{b_2}$+…+$\frac{1}{b_n}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列各函數(shù)的導(dǎo)數(shù)
(1)y=3x2-x+5
(2)f(x)=6logax
(3)$y=\frac{sinx}{x}$.

查看答案和解析>>

同步練習(xí)冊答案