(12分)有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個長方體無蓋容器(切、焊損耗忽略不計)。有人應用數(shù)學知識作如下設計:在鋼板的四個角處各切去一個全等的小正方形,剩余部分圍成一個長方體,該長方體的高是小正方形的邊長。
(1)請你求出這種切割、焊接而成的長方體容器的最大容積
(2)請你判斷上述方案是否是最佳方案,若不是,請設計一種新方案,使材料浪費最少,且所得長方體容器的容積
(1)當時,取最大值 ;
(2)重新設計方案如下:

如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長方體容器.新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積為6,故第二種方案符合要求.
本試題主要是考查了導數(shù)在研究函數(shù)中的運用。求解最值問題。
(1)因為設切去正方形邊長為x,則焊接成的長方體的底面邊長為,高為x
,然后求解導數(shù)來判定單調性得到極值,進而求解最值。
(2)在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長方體容器.新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積為6,故第二種方案符合要求
(1)設切去正方形邊長為x,則焊接成的長方體的底面邊長為,高為x,
                          ……(2分)
.                                ……(3分)
時,是關于x的增函數(shù);
時,是關于x的減函數(shù).
∴當時,取最大值                                       ……(7分)
(2)重新設計方案如下:

如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長方體容器.新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積為6,故第二種方案符合要求.……(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

的圖象的橫坐標伸長為原來的3倍,縱坐標縮短為原來的,則所得函數(shù)的解析式為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知正四棱錐S-ABCD所有棱長都為1,點E是側棱SC上一動點,過點E垂直于SC的截面將正四棱錐分成上、下兩部分。記SE=x(0<x<1),截面下面部分的體積為V(x),則函數(shù)y=V(x)的圖像大致為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的圖象如圖所示,則導函數(shù)的圖象可能是(    )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),若x=-1為函數(shù)的一個極值點,則下列圖象不可能為的圖象是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,垂直于x軸的直線EF經坐標原點O向右移動. 若E是EF與x 軸的交點,設OE =x),EF在移動過程中掃過平行四邊形OABC的面積為(圖中陰影部分),
則函數(shù)的圖象大致是(    ).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù))的圖象可能是(   )
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知不等式x2<0在x∈(0, )時恒成立,則m的取值范圍是_______ 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果函數(shù)的圖像如下圖,那么導函數(shù)的圖像可能是(  )

查看答案和解析>>

同步練習冊答案