5.若復(fù)數(shù)z滿足(1+2i)z=(1-i),則|z|=( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\sqrt{10}$

分析 由(1+2i)z=(1-i),得$z=\frac{1-i}{1+2i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再根據(jù)復(fù)數(shù)求模公式則答案可求.

解答 解:由(1+2i)z=(1-i),
得$z=\frac{1-i}{1+2i}=\frac{(1-i)(1-2i)}{(1+2i)(1-2i)}=\frac{-1-3i}{5}$=$-\frac{1}{5}-\frac{3}{5}i$,
則|z|=$\sqrt{(-\frac{1}{5})^{2}+(-\frac{3}{5})^{2}}=\frac{\sqrt{10}}{5}$.
故選:C.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,四棱錐P-ABCD中,ABCD是正方形,側(cè)棱PA⊥底面ABCD,PA=AB,M、N分別是PC、PD的中點,則異面直線BM與CN所成的角大小為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.arccos$\frac{\sqrt{2}}{3}$D.π-arccos$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(-3cosα,2)與向量$\overrightarrow$=(3,-4sinα)平行,則銳角α等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在如圖的正方體中,M、N分別為棱BC和棱CC′的中點,則異面直線B′D′和MN所成的角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|log2x>0},B={x|x<1},則( 。
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項和Sn滿足S3=6,S5=15.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{a_n}{{{2^{a_n}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對兩個具有相關(guān)關(guān)系的變量進(jìn)行研究時,首先要畫出這兩個變量的( 。
A.結(jié)構(gòu)圖B.散點圖C.等高條形圖D.殘差圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若直線y=kx與橢圓$\frac{{x}^{2}}{3}$+y2=1交于A,B兩點,在直線x+y-3=0上存在點C,使得△ABC為等邊三角形,則k=-1或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,平面PAC⊥平面ABCD,DA=AB=BC=$\frac{1}{2}$CD=1.AB∥DC,∠CPD=90°.
(1)證明:平面PAD⊥平面PCD;
(2)若二面角A-PC-D的大小為45°.求CP.

查看答案和解析>>

同步練習(xí)冊答案