已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
2
,則橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為( 。
A、
1
2
B、
3
3
C、
3
2
D、
2
2
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
2
,可得
1+
b2
a2
=
5
2
,化為
b2
a2
=
1
4
.利用橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1-
b2
a2
即可得出.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
2
,
1+
b2
a2
=
5
2
,化為
b2
a2
=
1
4

則橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1-
b2
a2
=
1-
1
4
=
3
2

故選:C.
點評:本題考查了雙曲線與橢圓的標準方程及其離心率,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過直線x+y-2
2
=0上的點P作圓x2+y2=1的兩條切線,若兩切線的夾角為60°,則點P的坐標為( 。
A、(0,2
2
B、(2
2
,0)
C、(
2
,
2
D、(
3
2
2
,
2
2
)或(
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=
3
cosx-sinx的圖象向右平移a個單位,所得圖象關(guān)于y軸對稱,則a的最大負值是( 。
A、-
π
6
B、-
π
3
C、-
3
D、-
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,則
a2+e
b
的最小值為( 。
A、
2
3
3
B、
2
6
3
C、2
3
D、2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)表示同一個函數(shù)的是( 。
A、y=x+1與y=
x2
x
+1
B、y=x與y=
x2
C、y=
x-1
x
與y=
x2-x
D、y=
1
x
與y=
1
 3x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)與橢圓
x2
a2
+
y2
b2
=1(a>b>0)交于A,B兩點,點F為拋物線與橢圓的公共焦點,且A,B,F(xiàn)共線則該橢圓的離心率為( 。
A、
2
-1
B、2(
2
-1
C、
5
-1
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線x2+y2=|x|+|y|所圍成的面積為( 。
A、
π
2
+1
B、π+2
C、2π+1
D、均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x4+ax2+1在點x=-1處切線的斜率為8,則a=(  )
A、9B、6C、-9D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)的離心率e=
3
2
,且經(jīng)過點(
3
2
,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l過橢圓的上焦點,交橢圓于A(x1,y1),B(x2,y2)兩點,已知
m
=(ax1,by1),
n
=(ax2,by2),若
m
n
,求直線l的斜率k的值.

查看答案和解析>>

同步練習(xí)冊答案