7.某地自來水苯超標(biāo),當(dāng)?shù)刈詠硭緦?duì)水質(zhì)檢測(cè)后,決定在水中投放一種藥劑來凈化水質(zhì),已知每投放質(zhì)量為m的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足y=mf(x),其中f(x)=$\left\{\begin{array}{l}\frac{x^2}{25}+2,({0<x≤5})\\ \frac{x+19}{2x-2},({x>5})\end{array}$,當(dāng)藥劑在水中的濃度不低于5(毫克/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升)時(shí)稱為最佳凈化.
(Ⅰ)如果投放的藥劑質(zhì)量為m=5,試問自來水達(dá)到有效凈化一共可持續(xù)幾天?
(Ⅱ)如果投放的藥劑質(zhì)量為m,為了使在9天(從投放藥劑算起包括9天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的最小值.

分析 (Ⅰ)確定m=5,利用分段函數(shù),解不等式,即可求得結(jié)論;
(Ⅱ)由題意,?x∈(0,9],結(jié)合函數(shù)解析式,確定函數(shù)單調(diào)性,求出其服務(wù),即可求出投放的藥劑質(zhì)量m的最小值.

解答 解:(Ⅰ)當(dāng)m=5時(shí),$y=\left\{\begin{array}{l}\frac{x^2}{5}+10,({0<x≤5})\\ \frac{5x+95}{2x-2},({x>5})\end{array}\right.$,…(2分)
當(dāng)0<x≤5時(shí),$\frac{x^2}{5}+10≥5$顯然符合題意;…(3分)
當(dāng)x>5時(shí),由$\frac{5x+95}{2x-2}≥5$可得5<x≤21;…(5分)
綜上0<x≤21,所以自來水達(dá)到有效凈化一共可持續(xù)21天…(6分)
(Ⅱ)由$y=mf(x)=\left\{\begin{array}{l}\frac{{m{x^2}}}{25}+2m,({0<x≤5})\\ \frac{{m({x+19})}}{2x-2},({x>5})\end{array}\right.$…(7分)
當(dāng)0<x≤5時(shí),$y=\frac{{m{x^2}}}{25}$+2m在區(qū)間(0,5]上單調(diào)遞增,所以2m<y≤3m;…(2分)
當(dāng)x>5時(shí),$y'=\frac{-40m}{{{{({2x-2})}^2}}}<0$,所以函數(shù)在(5,9]上單調(diào)遞減,從而得到$\frac{7m}{4}≤y<3m$,
綜上可知:$\frac{7m}{4}≤y≤3m$,…(11分)
為使5≤y≤10恒成立,只要$\left\{\begin{array}{l}\frac{7m}{4}≥5\\ 3m≤0\end{array}\right.$即可,
所以$\frac{20}{7}≤y≤\frac{10}{3}$,…(12分)
所以應(yīng)該投放的藥劑質(zhì)量m的最小值為$\frac{20}{7}$.…(13分)

點(diǎn)評(píng) 本題考查函數(shù)模型的選擇與應(yīng)用,考查學(xué)生解不等式的能力,確定函數(shù)模型是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=x2-2ax+2a.
(1)若函數(shù)f(x)在區(qū)間[1,2]上的最小值是-3,求a的值;
(2)若不等式f(x)>0對(duì)于任意的x∈[-2,-1]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.A={0,1,x2-5x},-4∈A,則實(shí)數(shù)x的值為1或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x∈N|x≤3},B={x|x2+6x-16<0},則A∩B=(  )
A.{x|-8<x<2}B.{1}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)的定義域?yàn)閇-1,1],則函數(shù)g(x)=ln(x+1)+f(2x)的定義域?yàn)?[{-\frac{1}{2},\frac{1}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A,B分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點(diǎn),不同兩點(diǎn)P,Q在橢圓C上,且關(guān)于x軸對(duì)稱,設(shè)直線AP,BQ的斜率分別為m,n,則當(dāng)$\frac{a}-\frac{1}{3mn}$取最大值時(shí),橢圓C的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=x2+lgx-3的一個(gè)零點(diǎn)所在區(qū)間為( 。
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\frac{3}{2})$D.$(\frac{3}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若log545=a,則log53等于( 。
A.$\frac{2}{a-1}$B.$\frac{2}{1+a}$C.$\frac{a+1}{2}$D.$\frac{a-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系中,若直線y=x與直線$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是參數(shù),0≤θ<π)垂直,則θ=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案