【題目】已知四棱錐﹣中,底面ABCD是矩形,⊥平面,,是的中點(diǎn),是線段上的點(diǎn).
(1)當(dāng)是的中點(diǎn)時(shí),求證:∥平面.
(2)當(dāng):= 2:1時(shí),求二面角﹣﹣的余弦值.
【答案】(1)見解析;(2)
【解析】
取PC中點(diǎn)G,連接FG,EG,推導(dǎo)四邊形AEGF是平行四邊形,從而可得AF∥EG,由此能證明∥平面;
以點(diǎn)A為原點(diǎn),AB為軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法即可求出二面角﹣﹣的余弦值.
(1)取PC中點(diǎn)G,連結(jié)FG,EG,
∵四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,F(xiàn)是PD的中點(diǎn),
E是線段AB的中點(diǎn),
∴FGDC,AEDC,∴FGAE,
∴四邊形AEGF是平行四邊形,∴AF∥EG,
∵EG平面PEC,AF平面PEC,
∴AF∥平面PEC.
(2)解:以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
由題意得E(2,0,0),P(0,0,1),C(3,1,0),D(0,1,0),
=(3,1,﹣1),=(0,1,﹣1),=(2,0,﹣1),
設(shè)平面PCD的法向量=(x,y,z),
則,取y=1,得=(0,1,1),
設(shè)平面PCE的法向量=(a,b,c),
則,取a=1,
得=(1,﹣1,2),
設(shè)二面角E﹣PC﹣D的平面角為θ,
則cosθ===.
∴二面角E﹣PC﹣D的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)在直線上,且離心率.
(1)求該橢圓的方程;
(2)若與是該橢圓上不同的兩點(diǎn),且線段的中點(diǎn)在直線上,試證: 軸上存在定點(diǎn),對(duì)于所有滿足條件的與,恒有;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理,化學(xué),生物,歷史,地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一個(gè)學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生中隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史學(xué)科的概率;
(Ⅲ)從選考方案確定的8名男生中隨機(jī)選出2名,設(shè)隨機(jī)變量,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較甲、乙兩地某月12時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中12時(shí)的氣溫?cái)?shù)據(jù)(單位:)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地的平均氣溫低于乙地的平均氣溫;
②甲地的平均氣溫高于乙地的平均氣溫;
③甲地氣溫的標(biāo)準(zhǔn)差小于乙地氣溫的標(biāo)準(zhǔn)差;
④甲地氣溫的標(biāo)準(zhǔn)差大于乙地氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下面兩個(gè)的相關(guān)命題的逆命題、否命題、逆否命題,并判斷它們的真假:
(1)命題:若,則.
逆命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
(2)命題:設(shè)是實(shí)數(shù),如果,那么有實(shí)數(shù)根。
否命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們常這樣說:“如果你的物理成績好,那么你的數(shù)學(xué)學(xué)習(xí)就不會(huì)有什么大問題.”某班針對(duì)“高中物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系,如表為該班隨機(jī)抽取6名學(xué)生在一次考試中的物理和數(shù)學(xué)成績:
學(xué)生編號(hào) 學(xué)科 | 1 | 2 | 3 | 4 | 5 | 6 |
物理成績(x) | 75 | 65 | 75 | 65 | 60 | 80 |
數(shù)學(xué)成績(y) | 125 | 117 | 110 | 103 | 95 | 110 |
(1)求數(shù)學(xué)成績y對(duì)物理成績x的線性回歸方程;
(2)該班某同學(xué)的物理成績100分,預(yù)測他的數(shù)學(xué)成績.
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
參考數(shù)據(jù):752+652+752+652+602+802=29700,
75×125+65×117+75×110+65×103+60×95+80×110=46425.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形, 平面, , , , , 分別為, , 的中點(diǎn).
(1)求證: 平面;
(2)求平面與平面所成銳二面角的大;
(3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出集合
(1)若求證:函數(shù)
(2)由(1)可知,是周期函數(shù)且是奇函數(shù),于是張三同學(xué)得出兩個(gè)命題:
命題甲:集合M中的元素都是周期函數(shù);命題乙:集合M中的元素都是奇函數(shù),請對(duì)此給出判斷,如果正確,請證明;如果不正確,請舉出反例;
(3)設(shè)為常數(shù),且求的充要條件并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2017年第一季度中國某五省情況圖,則下列陳述正確的是( )
①2017年第一季度 總量高于4000億元的省份共有3個(gè);
②與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長;
③去年同期的總量前三位依次是省、省、。
④2016年同期省的總量居于第四位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com