【題目】給出集合

(1)求證:函數(shù)

(2)(1)可知,是周期函數(shù)且是奇函數(shù),于是張三同學(xué)得出兩個(gè)命題:

命題甲:集合M中的元素都是周期函數(shù);命題乙:集合M中的元素都是奇函數(shù),請(qǐng)對(duì)此給出判斷,如果正確,請(qǐng)證明;如果不正確,請(qǐng)舉出反例;

(3)設(shè)為常數(shù),的充要條件并給出證明.

【答案】1)證明見(jiàn)解析;(2)命題甲正確,命題乙不正確;(3的充要條件為,,且.證明見(jiàn)解析.

【解析】

1轉(zhuǎn)化證明等價(jià)于,利用兩角和與差的三角函數(shù)化簡(jiǎn)求解即可.(2)命題甲正確.集合中的元素都是周期為6的周期函數(shù),驗(yàn)證即可,命題乙不正確.集合中的元素不都是奇函數(shù),列舉反例即可;(3)由函數(shù)的周期性,結(jié)合正弦公式,化簡(jiǎn)可得所求的值.

1)證明:轉(zhuǎn)化證明

,

左邊

右邊;

2)命題甲正確.集合中的元素都是周期為6的周期函數(shù).

,可得,

即有,可得,

為最小正周期為6的函數(shù);

命題乙不正確.集合中的元素不都是奇函數(shù).

是奇函數(shù);不是奇函數(shù).

3)由,可得

即有,可得,

,可得

即為,

即為,可得,且,

可得,且

的充要條件為,且

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究某種圖書(shū)每?jī)?cè)的成本費(fèi)(元)與印刷數(shù)(千冊(cè))的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中,

(1)根據(jù)散點(diǎn)圖判斷: 哪一個(gè)更適宜作為每?jī)?cè)成本費(fèi)(元)與印刷數(shù)(千冊(cè))的回歸方程類(lèi)型?(只要求給出判斷,不必說(shuō)明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每?jī)?cè)書(shū)定價(jià)為10元,則至少應(yīng)該印刷多少冊(cè)才能使銷(xiāo)售利潤(rùn)不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對(duì)于一組數(shù)據(jù) ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面ABCD是矩形,⊥平面,,的中點(diǎn),是線段上的點(diǎn).

(1)當(dāng)的中點(diǎn)時(shí),求證:∥平面

(2)當(dāng)= 2:1時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)30元,未售出的產(chǎn)品,每盒虧損10元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量, (單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).

(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù);

(2)將表示為的函數(shù);

(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為分別為左,右焦點(diǎn),分別為左,右頂點(diǎn),D為上頂點(diǎn),原點(diǎn)到直線的距離為.設(shè)點(diǎn)在第一象限,縱坐標(biāo)為t,且軸,連接交橢圓于點(diǎn).

(1)求橢圓的方程;

(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;

(理)求過(guò)點(diǎn)的圓方程(結(jié)果用t表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018屆四川省成都市第七中學(xué)高三上學(xué)期模擬】已知橢圓的一個(gè)焦點(diǎn),且過(guò)點(diǎn),右頂點(diǎn)為,經(jīng)過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2是橢圓上一點(diǎn), 的角平分線交軸于,求的長(zhǎng);

3)在軸上是否存在一點(diǎn),使得點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)落在上?若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過(guò)點(diǎn),求它的標(biāo)準(zhǔn)方程;

(2)已知雙曲線兩個(gè)焦點(diǎn)的坐標(biāo)分別是(0,-6),(0,6),并且經(jīng)過(guò)點(diǎn)(2,-5),求它的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)),滿足,且時(shí)恒成立.

1)求的值;

2)若,解不等式;

3)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線的焦點(diǎn)的直線與拋物線交于,兩點(diǎn),若,在準(zhǔn)線上的射影為,則等于(  ).

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案