精英家教網(wǎng) > 高中數(shù)學(xué) > 題目詳情
【題目】已知函數(shù)f(x)=ex﹣alnx﹣a. (Ⅰ)當(dāng)a=e時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)證明:對(duì)于a∈(0,e),f(x)在區(qū)間
上有極小值,且極小值大于0.
【答案】解:(Ⅰ)由f(x)=ex﹣alnx﹣a,x>0, 由a=e,則f(x)=ex﹣e(lnx﹣1),求導(dǎo)f′(x)=ex﹣
,
由f(1)=0,f′(1)=0,
∴y=f(x)在(1,f(1))處切線方程為y=0,
(Ⅱ)由a∈(0,e),則導(dǎo)f′(x)=ex﹣
,在(
,1)上是單調(diào)遞增函數(shù),
由f′(
)=
﹣e<0,f′(1)=e﹣a>0,
則x0∈(
,1)使得
﹣
=0,
∴x∈(
,x0),f′(x0)<0,x∈(x0 , 1),f′(x0)>0,
故f(x)在(
,x0)上單調(diào)遞減,在(x0 , 1)上單調(diào)遞增,
∴f(x)有極小值f(x0),由
﹣
=0,
則f(x0)=
﹣a(lnx0+1)=a(
﹣lnx0﹣1),
設(shè)g(x)=a(
﹣lnx﹣1),x∈(
,1),
g′(x)=a(﹣
﹣
)=﹣
,
∴g(x)在(
,1)上單調(diào)遞減,
∴g(x)>g(1)=0,
即f(x0)>0,
∴函數(shù)f(x)的極小值大于0.
【解析】(Ⅰ)求導(dǎo),f′(x)=ex﹣
,f(1)=0,f′(1)=0,y=f(x)在(1,f(1))處切線方程為y=0;(Ⅱ)由題意可知:f′(x)=ex﹣
,在(
,1)上是單調(diào)遞增函數(shù),則x0∈(
,1)使得
﹣
=0,根據(jù)函數(shù)的零點(diǎn)判定定理,f(x)有極小值f(x0),由
﹣
=0,構(gòu)造輔助函數(shù),求導(dǎo),根據(jù)函數(shù)的單調(diào)性即可求得f(x0)>0,即f(x)在區(qū)間
上有極小值,函數(shù)f(x)的極小值大于0.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值.
練習(xí)冊(cè)系列答案
中考快遞同步檢測(cè)系列答案
總復(fù)習(xí)測(cè)試系列答案
中教聯(lián)中考新突破系列答案
搶分加速度系列答案
全品小學(xué)總復(fù)習(xí)系列答案
全品中考復(fù)習(xí)方案系列答案
中考金卷權(quán)威預(yù)測(cè)8套卷系列答案
直通中考實(shí)戰(zhàn)試卷系列答案
直擊中考初中全能優(yōu)化復(fù)習(xí)系列答案
知識(shí)綠卡系列答案
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】已知點(diǎn)H(﹣1,0),點(diǎn)P在y軸上,動(dòng)點(diǎn)M滿足PH⊥PM,且直線PM與x軸交于點(diǎn)Q,Q是線段PM的中點(diǎn).
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)若點(diǎn)F是曲線E的焦點(diǎn),過(guò)F的兩條直線l1 , l2關(guān)于x軸對(duì)稱,且l1交曲線E于A、C兩點(diǎn),l2交曲線E于B、D兩點(diǎn),A、D在第一象限,若四邊形ABCD的面積等于
,求直線l1 , l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】已知橢圓C:
=1(a>b>0),橢圓C的右焦點(diǎn)F的坐標(biāo)為
,短軸長(zhǎng)為2.
(I)求橢圓C的方程;
(II)若點(diǎn)P為直線x=4上的一個(gè)動(dòng)點(diǎn),A,B為橢圓的左、右頂點(diǎn),直線AP,BP分別與橢圓C的另一個(gè)交點(diǎn)分別為M,N,求證:直線MN恒過(guò)點(diǎn)E(1,0).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度.藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示: 
根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說(shuō)法中,不正確的個(gè)數(shù)是( )
①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
②每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒
③每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
④首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】已知數(shù)列{an}是首項(xiàng)
,公比
的等比數(shù)列.設(shè)
(n∈N*). (Ⅰ)求證:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)設(shè)cn=an+b2n , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】如圖,正四面體ABCD中,E、F分別是棱BC和AD的中點(diǎn),則直線AE和CF所成的角的余弦值為( ) 
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如下表所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失�。�
晉級(jí)成功
晉級(jí)失敗
合計(jì)
男
16
女
50
合計(jì)
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為X,求X的分布列與數(shù)學(xué)期望E(X).
(參考公式:
,其中n=a+b+c+d)
P(K2≥k0)
0.40
0.25
0.15
0.10
0.05
0.025
k0
0.780
1.323
2.072
2.706
3.841
5.024

查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ=2,在以極點(diǎn)為直角坐標(biāo)原點(diǎn)O,極軸為x軸的正半軸建立的平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線C經(jīng)過(guò)伸縮變換φ:
得到曲線C′,若M(x,y)為曲線C′上任意一點(diǎn),求點(diǎn)M到直線l的最小距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)