分析 利用同角三角函數(shù)平方關(guān)系式化簡,根據(jù)基本不等式的性質(zhì)可得答案.
解答 解:滿足$\frac{1}{si{n}^{2}y}+\frac{1}{co{s}^{2}y}$=2${\;}^{x-{e}^{x-1}+2}$,
可得:$\frac{si{n}^{2}y+co{s}^{2}y}{co{s}^{2}y}+\frac{si{n}^{2}y+co{s}^{2}y}{si{n}^{2}y}$=2${\;}^{x-{e}^{x-1}+2}$,
∵$\frac{si{n}^{2}y+co{s}^{2}y}{co{s}^{2}y}+\frac{si{n}^{2}y+co{s}^{2}y}{si{n}^{2}y}$≥2+2=4,當(dāng)且僅當(dāng)sin2y=cos2y時取得等號,則tan2y=$\frac{si{n}^{2}y}{co{s}^{2}y}=1$.
∴2${\;}^{x-{e}^{x-1}+2}$≥4
即x-ex-1+2≥2.
∴x-ex-1≥0.
當(dāng)x=1時,可得取得等號.
∴則$\frac{ta{n}^{2}y}{2x}$=$\frac{1}{2×1}=\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點(diǎn)評 本題考查了三角函數(shù)的運(yùn)算和指數(shù)冪的運(yùn)算性質(zhì),基本不等式等號取得的情況.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0) | B. | (2,0) | C. | (0,-1) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com