8.若正數(shù)x、y滿足2x+y-3=0,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為( 。
A.2B.3C.4D.5

分析 利用“乘1法”基本不等式的性質(zhì)即可得出.

解答 解:正數(shù)x、y滿足2x+y-3=0,
即2x+y=3,
則$\frac{2}{x}$+$\frac{1}{y}$=$\frac{1}{3}$(2x+y)($\frac{2}{x}$+$\frac{1}{y}$)=$\frac{1}{3}$(4+1+$\frac{2y}{x}$+$\frac{2y}{y}$)≥$\frac{1}{3}$(5+2$\sqrt{\frac{2y}{x}•\frac{2x}{y}}$)=3,當(dāng)且僅當(dāng)x=y=$\frac{1}{3}$時取等號,
故選:B.

點評 本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知:-$\frac{3π}{2}$<x<-π,tanx=-3. 
(Ⅰ)求 sinx•cosx的值;
(Ⅱ)求$\frac{sin(360°-x)•cos(180°-x)-si{n}^{2}x}{cos(180°+x)•cos(90°-x)+co{s}^{2}x}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一支田徑隊有男運動員49人,女運動員35人,用分層抽樣的方法從全體運動員中抽出一個容量為24的樣本,則應(yīng)從男運動員中抽出的人數(shù)為( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.四面體D-ABC中,AB=BC,在側(cè)面DAC中,中線AN⊥中線DM,且DB⊥AN.
(1)求證:MN∥面DAB;
(2)平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若向量$\overrightarrow{a}$=(1,0,-1),則與$\overrightarrow{a}$共線的向量是( 。
A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在正方形ABCD中,點E在邊AD上(端點除外),現(xiàn)將△ABE沿直線BE翻折至△A′BE,連結(jié)A′C、A′D,記二面角A′-BE-C為α(0<α<π),則( 。
A.存在α,使得A′E⊥面A′BCB.存在α,使得A′B⊥面A′CD
C.存在α,使得A′E⊥面A′CDD.存在α,使得A′B⊥面A′DE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若實數(shù)x,y 滿足$\frac{1}{si{n}^{2}y}+\frac{1}{co{s}^{2}y}$=2${\;}^{x-{e}^{x-1}+2}$,則$\frac{ta{n}^{2}y}{2x}$的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$θ∈(\frac{π}{2},π)$,則$\sqrt{1-2sin(π+θ)sin(\frac{3π}{2}-θ)}$=(  )
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知三棱錐O-ABC的三條側(cè)棱OA,OB,OC兩兩垂直,△ABC為等邊三角形,M為△ABC內(nèi)部一點,點P在OM的延長線上,且PA=PB.
(Ⅰ)證明:OA=OB;
(Ⅱ)證明:平面PAB⊥平面POC.

查看答案和解析>>

同步練習(xí)冊答案