已知函數(shù)f(x)=
1
3
x3-ax2+1(a∈R).
(Ⅰ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a2-3)上存在極值,求a的取值范圍;
(Ⅱ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,函數(shù)零點(diǎn)的判定定理,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),令f'(x)=0,解得x=0或x=2a,x=0不在(a,a 2-3)內(nèi),要使函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,只需a<2a<a2-3,即可求a的取值范圍;
(Ⅱ)確定函數(shù)y=f(x)在(0,2)內(nèi)單調(diào)遞減,即可證明函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn).
解答: (Ⅰ)解:由已知f'(x)=x2-2ax=x(x-2a)
令f'(x)=0,解得x=0或x=2a,
∵a>0,∴x=0不在(a,a 2-3)內(nèi)
要使函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,只需a<2a<a2-3
解得a>3…(6分)
(Ⅱ)證明:∵a>2,∴2a>4,∴f'(x)<0在(0,2)上恒成立,
即函數(shù)y=f(x)在(0,2)內(nèi)單調(diào)遞減,
f(0)=1>0,f(2)=
11-12a
3
<0

∴函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn)  …(12分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的極值,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1
(a∈R).
(1)當(dāng)a=
9
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的無極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖甲,△ABC是邊長(zhǎng)為6的等邊三角形,E,D分別為AB,AC靠近B,C的三等分點(diǎn),點(diǎn)G為邊BC邊的中點(diǎn),線段AG交線段ED于點(diǎn)F.將△AED沿ED翻折,使平面AED⊥平面BCDE,連接AB,AC,AG,形成如圖乙所示的幾何體.
(Ⅰ)求證:BC⊥平面AFG
(Ⅱ)求四棱錐A-BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù)),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N+).
(Ⅰ)證明:f(x)≥g1(x);
(Ⅱ)證明:當(dāng)x≥0時(shí),f(x)≥g2(x);
(Ⅲ)當(dāng)x≥0時(shí),比較f(x)與gn(x)的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ex-1
x

(1)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(2)證明:對(duì)任意正數(shù)a,存在正數(shù)x,使不等式f(x)-1<a成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱椎P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(Ⅰ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(Ⅱ)證明:無論點(diǎn)E在邊BC的何處,都有AF⊥PE;
(Ⅲ)求當(dāng)BE的長(zhǎng)為多少時(shí),二面角P-DE-A的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(ax+b)(其中e=2.71828…),g(x)=x2+2bx+2,已知它們?cè)趚=0處有相同的切線.
(1)求函數(shù)f(x),g(x)的解析式;
(2)若函數(shù)F(x)=f(x)+g(x)-2(ex+x),試判斷函數(shù)F(x)的零點(diǎn)個(gè)數(shù),并說明理由;
(3)若函數(shù)f(x)在[t,t+1](t>-3)上的最小值為φ(t),解關(guān)于t的不等式φ(t)≤4e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xn+bx+c (n∈N+,b,c∈R)
(1)設(shè)n=2,b=1,c=-1,證明:f(x)在區(qū)間(
1
2
,1)內(nèi)存在唯一零點(diǎn);
(2)設(shè)n為偶數(shù),|f(-1)|≤1,|f(1)|≤1,求b+3c的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x+1,x∈[-3,0]的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案