11.下列四個(gè)類(lèi)比中,正確得個(gè)數(shù)為( 。
(1)若一個(gè)偶函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為奇函數(shù),將此結(jié)論類(lèi)比到奇函數(shù)的結(jié)論為:若一個(gè)奇函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為偶函數(shù).
(2)若雙曲線的焦距是實(shí)軸長(zhǎng)的2倍,則此雙曲線的離心率為2.將此結(jié)論類(lèi)比到橢圓的結(jié)論為:若橢圓的焦距是長(zhǎng)軸長(zhǎng)的一半,則此橢圓的離心率為$\frac{1}{2}$.
(3)若一個(gè)等差數(shù)列的前3項(xiàng)和為1,則該數(shù)列的第2項(xiàng)為$\frac{1}{3}$.將此結(jié)論類(lèi)比到等比數(shù)列的結(jié)論為:若一個(gè)等比數(shù)列的前3項(xiàng)積為1,則該數(shù)列的第2項(xiàng)為1.
(4)在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4,將此結(jié)論類(lèi)比到空間中的結(jié)論為:在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積比為1:8.
A.1B.2C.3D.4

分析 根據(jù)類(lèi)比推理的一般步驟是:①找出兩類(lèi)事物之間的相似性或一致性;
②用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(或猜想),判斷命題是否正確.

解答 解:對(duì)于(1),若一個(gè)偶函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為奇函數(shù),
將此結(jié)論類(lèi)比到奇函數(shù)的結(jié)論為:若一個(gè)奇函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為偶函數(shù),命題正確;
對(duì)于(2),若雙曲線的焦距是實(shí)軸長(zhǎng)的2倍,則此雙曲線的離心率為2;
將此結(jié)論類(lèi)比到橢圓的結(jié)論為:若橢圓的焦距是長(zhǎng)軸長(zhǎng)的一半,則此橢圓的離心率為$\frac{1}{2}$,命題正確;
對(duì)于(3),若一個(gè)等差數(shù)列的前3項(xiàng)和為1,則該數(shù)列的第2項(xiàng)為$\frac{1}{3}$;
將此結(jié)論類(lèi)比到等比數(shù)列的結(jié)論為:若一個(gè)等比數(shù)列的前3項(xiàng)積為1,則該數(shù)列的第2項(xiàng)為1,命題正確;
對(duì)于(4),在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4,
將此結(jié)論類(lèi)比到空間中的結(jié)論為:
在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積比為1:8,命題正確.
綜上,正確的命題有4個(gè).
故選:D.

點(diǎn)評(píng) 本題考查了類(lèi)比推理的應(yīng)用問(wèn)題,也考查了命題真假的判斷問(wèn)題,綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等差數(shù)列{an}中a1=1,a5-a2=6,則a6的值為( 。
A.5B.11C.13D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直線ax-y+2a=0的傾斜角為$\frac{3π}{4}$,則a等于( 。
A.1B.-1C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.執(zhí)行如圖所示的程序框圖,輸出的T=29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.三位老師和三位學(xué)生站成一排,要求任何兩位學(xué)生都不相鄰,則不同的排法總數(shù)為(  )
A.720B.144C.36D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=2lnx-ax2+3,若存在實(shí)數(shù)m、n∈[1,5]滿足n-m≥2時(shí),f(m)=f(n)成立,則實(shí)數(shù)a的最大值為( 。
A.$\frac{ln5-ln3}{8}$B.$\frac{ln3}{4}$C.$\frac{ln5+ln3}{8}$D.$\frac{ln4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若關(guān)于x的不等式f(x)≤λ(x2-1)對(duì)任意x∈[1,+∞)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=sinxcos2x,則下列關(guān)于函數(shù)f(x)的結(jié)論中,錯(cuò)誤的是(  )
A.最大值為1B.圖象關(guān)于直線x=-$\frac{π}{2}$對(duì)稱(chēng)
C.既是奇函數(shù)又是周期函數(shù)D.圖象關(guān)于點(diǎn)($\frac{3π}{4}$,0)中心對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-6,則f(f(2))=( 。
A.-$\frac{23}{4}$B.$\frac{23}{4}$C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案