A. | -$\frac{4\sqrt{2}}{9}$ | B. | -$\frac{2\sqrt{2}}{9}$ | C. | $\frac{2\sqrt{2}}{9}$ | D. | $\frac{4\sqrt{2}}{9}$ |
分析 由已知利用誘導公式可求sinα,利用同角三角函數基本關系式可求cosα,進而利用二倍角正弦函數公式即可計算得解.
解答 解:∵sin(π-α)=$\frac{1}{3}$,
∴sinα=$\frac{1}{3}$,
又∵$\frac{π}{2}$≤α≤π,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴sin2α=2sinαcosα=2×$\frac{1}{3}×$(-$\frac{2\sqrt{2}}{3}$)=-$\frac{4\sqrt{2}}{9}$.
故選:A.
點評 本題主要考查了誘導公式,同角三角函數基本關系式,二倍角正弦函數公式在三角函數化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a?α,若b∥a,則b∥α | B. | α⊥β,α∩β=c,b⊥c,則b⊥β | ||
C. | a⊥b,b⊥c,則a∥c | D. | a∩b=A,a?α,b?α,a∥β,b∥β,則α∥β |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 60 | B. | 70 | C. | 80 | D. | 100 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com