定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-3,-2]上遞減,α,β是銳角三角形的兩個內(nèi)角且α≠β,則下列不等式正確的是( )
A.f(sinα)>f(cosβ)
B.f(sinα)<f(cosβ)
C.f(sinα)>f(sinβ)
D.f(cosα)>f(cosβ)
【答案】分析:由條件f(x+1)=-f(x),得到f(x)是周期為2的周期函數(shù),由f(x)是定義在R上的偶函數(shù),在[-3,-2]上是減函數(shù),根據(jù)偶函數(shù)的對稱性可知f(x)在[2,3]的單調(diào)性,根據(jù)周期性進而可知函數(shù)f(x)在[0,1]上單調(diào)性,再由α,β是銳角三角形的兩個內(nèi)角,得α>90°-β,且sinα、cosβ都在區(qū)間[0,1]上,從而可求
解答:解:∵f(x+1)=-f(x)
∴f(x+2)=-f(x+1)=f(x)即f(x)是周期為2的周期函數(shù).
∵y=f(x)是定義在R上的偶函數(shù)
∴f(-x)=f(x)
∵f(x)在[-3,-2]上是減函數(shù)
根據(jù)偶函數(shù)的對稱性可知函數(shù)f(x)在[2,3]上是增函數(shù)
根據(jù)函數(shù)的周期可知,函數(shù)f(x)在[0,1]上是增函數(shù),
∵α,β是銳角三角形的兩個內(nèi)角
∴α+β>90°,α>90°-β,
∴1≥sinα>sin(90°-β)=cosβ≥0
∴f(sinα)>f(cosβ),
故選 A
點評:本題綜合考查函數(shù)的奇偶性、單調(diào)性、周期性等函數(shù)知識的綜合應用,解題的關鍵是靈活應用函數(shù)的知識.